參考文獻 |
Acevedo, B., & Barriocanal, C. (2015). The influence of the pyrolysis conditions in a rotary oven on the characteristics of the products. Fuel Processing Technology, 131, 109-116.
Açıkalın, K., Karaca, F., & Bolat, E. (2012). Pyrolysis of pistachio shell: Effects of pyrolysis conditions and analysis of products. Fuel, 95, 169-177.
Ágnes, N., & Rajmund, K. U. T. I. (2016). The environmental impact of plastic waste incineration. AARMS–Academic and Applied Research in Military and Public Management Science, 15(3), 231-237.
Al-Salem, S. M., Antelava, A., Constantinou, A., Manos, G., & Dutta, A. (2017). A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). Journal of Environmental Management, 197, 177-198.
Al-Salem, S. M. (2019). Thermal pyrolysis of high density polyethylene (HDPE) in a novel fixed bed reactor system for the production of high value gasoline range hydrocarbons (HC). Process Safety and Environmental Protection, 127, 171-179.
Areeprasert, C., Asingsamanunt, J., Srisawat, S., Kaharn, J., Inseemeesak, B., Phasee, P., Khaobang, C., Siwakosit, W., & Chiemchaisri, C. (2017). Municipal plastic waste composition study at transfer station of Bangkok and possibility of its energy recovery by pyrolysis. Energy Procedia, 107, 222-226.
Arena, U., Zaccariello, L., & Mastellone, M. L. (2010). Fluidized bed gasification of waste-derived fuels. Waste Management, 30(7), 1212-1219.
Aylón, E., Fernández-Colino, A., Murillo, R., Navarro, M. V., García, T., & Mastral, A. M. (2010). Valorisation of waste tyre by pyrolysis in a moving bed reactor. Waste Management, 30(7), 1220-1224.
Berger, K. R. (2003). A brief history of packaging. EDIS, 2003(17).
Boateng, A. A., & Barr, P. V. (1996). A thermal model for the rotary kiln including heat transfer within the bed. International Journal of Heat and Mass Transfer, 39(10), 2131-2147.
Budsaereechai, S., Hunt, A. J., & Ngernyen, Y. (2019). Catalytic pyrolysis of plastic waste for the production of liquid fuels for engines. RSC advances, 9(10), 5844-5857.
Burnley, S. J. (2007). A review of municipal solid waste composition in the United Kingdom. Waste management, 27(10), 1274-1285.
Chandran, M., Tamilkolundu, S., & Murugesan, C. (2020). Conversion of plastic waste to fuel. In Plastic Waste and Recycling (pp. 385-399). Academic Press, United States.
Chawdhury, M. A., & Mahkamov, K. (2011). Development of a small downdraft biomass gasifier for developing countries. Journal of scientific research, 3(1), 51-51.
Coats, A. W., & Redfern, J. P. (1964). Kinetic parameters from thermogravimetric data. Nature, 201, 68-69.
Czajczyńska, D., Anguilano, L., Ghazal, H., Krzyżyńska, R., Reynolds, A. J., Spencer, N., & Jouhara, H. (2017). Potential of pyrolysis processes in the waste management sector. Thermal Science and Engineering Progress, 3, 171-197.
Dahlbo, H., Poliakova, V., Mylläri, V., Sahimaa, O., & Anderson, R. (2018). Recycling potential of post-consumer plastic packaging waste in Finland. Waste management, 71, 52-61.
Das, P., & Tiwari, P. (2018). Valorization of packaging plastic waste by slow pyrolysis. Resources, Conservation and Recycling, 128, 69-77.
De Conto, D., Silvestre, W. P., Baldasso, C., & Godinho, M. (2016). Performance of rotary kiln reactor for the elephant grass pyrolysis. Bioresource Technology, 218, 153-160.
Deshwal, G. K., & Panjagari, N. R. (2020). Review on metal packaging: Materials, forms, food applications, safety and recyclability. Journal of food science and technology, 57(7), 2377-2392.
Díez, C., Sánchez, M. E., Haxaire, P., Martínez, O., & Morán, A. (2005). Pyrolysis of tyres: A comparison of the results from a fixed-bed laboratory reactor and a pilot plant (rotatory reactor). Journal of Analytical and Applied Pyrolysis, 74(1-2), 254-258.
ECHA Mapping exercise - plastic additives initiative, website:https://echa.europa.eu/mapping-exercise-plastic-additives-initiative
Fan, L., Zhang, Y., Liu, S., Zhou, N., Chen, P., Cheng, Y., Addy, M., Lu, Q., Omar, M., Liu, Y., Wang, Y., Dai, L., Anderson, E., Peng, P., Lei, H., & Ruan, R. (2017). Bio-oil from fast pyrolysis of lignin: Effects of process and upgrading parameters. Bioresource technology, 241, 1118-1126.
Fossum, M., Beyer, R. V., & Bioenergy, I. (1998). Co-combustion: Biomass fuel gas and natural gas. SINTEF Energy Research, Trondheim.
Galvagno, S., Fortuna, F., Cornacchia, G., Casu, S., Coppola, T., Sharma, V. K. (2001). Pyrolysis process for treatment of automobile shredder residue: preliminary experimental results. Energy Conversion and Management, 42(5), 573-586.
Jin, Q., Wang, X., Li, S., Mikulčić, H., Bešenić, T., Deng, S., Vujanović, M., Tan, H., & Kumfer, B. M. (2019). Synergistic effects during co-pyrolysis of biomass and plastic: Gas, tar, soot, char products and thermogravimetric study. Journal of the energy institute, 92(1), 108-117.
Kamboj, N., Bisht, A., Kamboj, V., & Bisht, A. (2020). Leachate disposal induced groundwater pollution: A threat to drinking water scarcity and its management.
Kehinde, O., Ramonu, O. J., Babaremu, K. O., & Justin, L. D. (2020). Plastic wastes: environmental hazard and instrument for wealth creation in Nigeria. Heliyon, 6(10), e05131.
Kim, S., Jang, E. S., Shin, D. H., & Lee, K. H. (2004). Using peak properties of a DTG curve to estimate the kinetic parameters of the pyrolysis reaction: application to high density polyethylene. Polymer Degradation and Stability, 85(2), 799-805.
Kiran, N., Ekinci, E., & Snape, C. E. (2000). Recyling of plastic wastes via pyrolysis. Resources, Conservation and Recycling, 29(4), 273-283.
Kumar, A., Jones, D. D., & Hanna, M. A. (2009). Thermochemical biomass gasification: a review of the current status of the technology. Energies, 2(3), 556-581.
Law, K. L., Starr, N., Siegler, T. R., Jambeck, J. R., Mallos, N. J., & Leonard, G. H. (2020). The United States’ contribution of plastic waste to land and ocean. Science advances, 6(44), eabd0288.
Letcher, T. M. (2020). Introduction to plastic waste and recycling. In Plastic Waste and Recycling (pp. 3-12). Academic Press.
Li, A. M., Li, X. D., Li, S. Q., Ren, Y., Chi, Y., Yan, J. H., & Cen, K. F. (1999). Pyrolysis of solid waste in a rotary kiln: influence of final pyrolysis temperature on the pyrolysis products. Journal of Analytical and Applied Pyrolysis, 50(2), 149-162.
Li, S. Q., Yan, J. H., Li, R. D., Chi, Y., & Cen, K. F. (2002). Axial transport and residence time of MSW in rotary kilns: Part I. Experimental. Powder technology, 126(3), 217-227.
Li, S. Q., Yao, Q., Chi, Y., Yan, J. H., & Cen, K. F. (2004). Pilot-scale pyrolysis of scrap tires in a continuous rotary kiln reactor. Industrial & engineering chemistry research, 43(17), 5133-5145.
López, A., De Marco, I., Caballero, B. M., Laresgoiti, M. F., & Adrados, A. (2011). Influence of time and temperature on pyrolysis of plastic wastes in a semi-batch reactor. Chemical Engineering Journal, 173(1), 62-71.
López, G. A. R. T. Z. E. N., Alvarez, J., Amutio, M. A. I. D. E. R., Mkhize, N. M., Danon, B., Van der Gryp, P., ... & Olazar, M. A. R. T. I. N. (2017). Waste truck-tyre processing by flash pyrolysis in a conical spouted bed reactor. Energy Conversion and Management, 142, 523-532.
Lu, C.H., Chiang, K.Y., 2017. Gasification of non-recycled plastic packaging material containing aluminum: Hydrogen energy production and aluminum recovery. International Journal of Hydrogen Energy, 42(45), 27532-27542.
Luo, X. T., Wang, Z. Q., Wu, J. L., & Wu, J. H. (2012). Study on the pyrolysis mechanism of polyethylene, polystyrene, and polyvinyl chloride by TGA-FTIR. Journal of Fuel Chemistry and Technology, 40(9), 1147-1152.
Ma, S., Leong, H., He, L., Xiong, Z., Han, H., Jiang, L., Wang, Y., Hu, S., Su, S., & Xiang, J. (2020). Effects of pressure and residence time on limonene production in waste tires pyrolysis process. Journal of Analytical and Applied Pyrolysis, 151, 104899.
Mangesh, V. L., Padmanabhan, S., Tamizhdurai, P., & Ramesh, A. (2020). Experimental investigation to identify the type of waste plastic pyrolysis oil suitable for conversion to diesel engine fuel. Journal of Cleaner Production, 246, 119066.
Mapping exercise - plastic additives initiative, https://echa.europa.eu/de/mapping-exercise-plastic-additives-initiative (2021)
Martínez-Lera, S., Torrico, J., Pallarés, J., & Gil, A. (2013). Thermal valorization of post-consumer film waste in a bubbling bed gasifier. Waste management, 33(7), 1640-1647.
Mastral, F. J., Esperanza, E., Garcıa, P., & Juste, M. (2002). Pyrolysis of high-density polyethylene in a fluidised bed reactor. Influence of the temperature and residence time. Journal of Analytical and Applied Pyrolysis, 63(1), 1-15.
Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., & Nizami, A. S. (2016a). Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection, 102, 822-838.
Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., Ismail, I. M. I., & Nizami, A. S. (2017b). Effect of plastic waste types on pyrolysis liquid oil. International biodeterioration & biodegradation, 119, 239-252.
Miandad, R., Barakat, M. A., Rehan, M., Aburiazaiza, A. S., Ismail, I. M. I., & Nizami, A. S. (2017a). Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts. Waste Management, 69, 66-78.
Miandad, R., Nizami, A. S., Rehan, M., Barakat, M. A., Khan, M. I., Mustafa, A., Ismail, I. M. I., & Murphy, J. D. (2016b). Influence of temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid oil. Waste Management, 58, 250-259.
Mumladze, T., Yousef, S., Tatariants, M., Kriūkienė, R., Makarevicius, V., Lukošiūtė, S. I., ... & Denafas, G. (2018). Sustainable approach to recycling of multilayer flexible packaging using switchable hydrophilicity solvents. Green Chemistry, 20(15), 3604-3618.
Niaounakis, M. (2020). In M. Niaounakis (Ed.), Recycling of Flexible Plastic Packaging (pp. 211-264): William Andrew Publishing.
Nieminen, J., Anugwom, I., Kallioinen, M., & Mänttäri, M. (2020). Green solvents in recovery of aluminium and plastic from waste pharmaceutical blister packaging. Waste Management, 107, 20-27.
Ningbo, G., Baoling, L., Aimin, L., & Juanjuan, L. (2015). Continuous pyrolysis of pine sawdust at different pyrolysis temperatures and solid residence times. Journal of analytical and applied pyrolysis, 114, 155-162.
Onwudili, J. A., Insura, N., & Williams, P. T. (2009). Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time. Journal of Analytical and Applied Pyrolysis, 86(2), 293-303.
Park, K. B., Jeong, Y. S., Guzelciftci, B., & Kim, J. S. (2019). Characteristics of a new type continuous two-stage pyrolysis of waste polyethylene. Energy, 166, 343-351.
Pinto, F., Costa, P., Gulyurtlu, I., & Cabrita, I. (1999). Pyrolysis of plastic wastes. 1. Effect of plastic waste composition on product yield. Journal of Analytical and Applied Pyrolysis, 51(1-2), 39-55.
PlasticsEurope, 2020. Plastics - The Facts 2020: An Analysis of European Plastics. website: https://www.plasticseurope.org/download_file/view/4829/179
Prawisudha, P., Mu’min, G. F., Yoshikawa, K., & Pasek, A. D. (2014). Experimental Study on Separation of Metal Layer in Aluminum-plastic Packaging by Employing Hydrothermal Process. Department of Mechanical Engineering, Institut Teknologi Bandung.
Pruksakit, W., Dejterakulwong, C., & Patumsawad, S. (2014, November). Performance prediction of a downdraft gasifier using equilibrium model: effect of different biomass. In Proceedings of the 5th international conference on sustainable energy and environment (SEE: Science, Technology and Innovation for ASEAN Green Growth, Bangkok, Thailand, 19-21.
Rousta, K., Zisen, L., & Hellwig, C. (2020). Household Waste Sorting Participation in Developing Countries—A Meta-Analysis. Recycling, 5(1), 6.
Sansaniwal, S. K., Pal, K., Rosen, M. A., & Tyagi, S. K. (2017). Recent advances in the development of biomass gasification technology: A comprehensive review. Renewable and sustainable energy reviews, 72, 363-384.
Sharuddin, S. D. A., Abnisa, F., Daud, W. M. A. W., & Aroua, M. K. (2016). A review on pyrolysis of plastic wastes. Energy conversion and management, 115, 308-326.
Sharuddin, S. D. A., Abnisa, F., Daud, W. M. A. W., & Aroua, M. K. (2017). Energy recovery from pyrolysis of plastic waste: Study on non-recycled plastics (NRP) data as the real measure of plastic waste. Energy conversion and management, 148, 925-934.
Singh, T. S., Verma, T. N., & Singh, H. N. (2020). A lab scale waste to energy conversion study for pyrolysis of plastic with and without catalyst: Engine emissions testing study. Fuel, 277, 118176.
Sohaib, Q., Habib, M., Fawad Ali Shah, S., Habib, U., & Ullah, S. (2017). Fast pyrolysis of locally available green waste at different residence time and temperatures. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(15), 1639-1646.
Tiikma, L., Tamvelius, H., & Luik, L. (2007). Coprocessing of heavy shale oil with polyethylene waste. Journal of analytical and applied pyrolysis, 79(1-2), 191-195.
Tsai, W. T. (2021). Analysis of plastic waste reduction and recycling in Taiwan. Waste Management & Research, 39(5), 713-719.
Tulashie, S. K., Boadu, E. K., & Dapaah, S. (2019). Plastic waste to fuel via pyrolysis: A key way to solving the severe plastic waste problem in Ghana. Thermal Science and Engineering Progress, 11, 417-424.
Williams, P. T., & Williams, E. A. (1999). Fluidised bed pyrolysis of low density polyethylene to produce petrochemical feedstock. Journal of Analytical and Applied Pyrolysis, 51(1-2), 107-126.
Xiao, R., Jin, B., Zhou, H., Zhong, Z., & Zhang, M. (2007). Air gasification of polypropylene plastic waste in fluidized bed gasifier. Energy Conversion and Management, 48(3), 778-786.
Yazdani, E., Hashemabadi, S. H., & Taghizadeh, A. (2019). Study of waste tire pyrolysis in a rotary kiln reactor in a wide range of pyrolysis temperature. Waste Management, 85, 195-201.
Yousef, S., Eimontas, J., Zakarauskas, K., & Striūgas, N. (2021). Microcrystalline paraffin wax, biogas, carbon particles and aluminum recovery from metallised food packaging plastics using pyrolysis, mechanical and chemical treatments. Journal of Cleaner Production, 290, 125878.
Yousef, S., Mumladze, T., Tatariants, M., Kriūkienė, R., Makarevicius, V., Bendikiene, R., & Denafas, G. (2018). Cleaner and profitable industrial technology for full recovery of metallic and non-metallic fraction of waste pharmaceutical blisters using switchable hydrophilicity solvents. Journal of Cleaner Production, 197, 379-392.
Zhang, S. F., Zhang, L. L., Luo, K., Sun, Z. X., & Mei, X. X. (2014). Separation properties of aluminium–plastic laminates in post-consumer Tetra Pak with mixed organic solvent. Waste Management & Research, 32(4), 317-322.
Zhang, Y., Ji, G., Chen, C., Wang, Y., Wang, W., & Li, A. (2020). Liquid oils produced from pyrolysis of plastic wastes with heat carrier in rotary kiln. Fuel Processing Technology, 206, 106455.
Zhou, Y., Liu, Q., Zhao, Y., & Li, W. (2018, June). Aluminum Foil Packaging Sealing Testing Method Based on Gabor Wavelet and ELM Neural Network. In Proceedings of the 2nd International Conference on Advances in Image Processing (pp. 59-63).
Zolfagharpour, H. R., Nowrouz, P., Mohseni‐Bandpei, A., Majlesi, M., Rafiee, M., & Khalili, F. (2020). Influences of temperature, waste size and residence time on the generation of polycyclic aromatic hydrocarbons during the fast pyrolysis of medical waste. Caspian Journal of Environmental Sciences, 18(1), 47-57.
江康鈺,張宏愷,呂承翰,應用氣化處理技術回收鋁箔包資能源之可行性評估,中華民國環境工程學會2015廢棄物處理技術研討會,桃園,2015。
行政院環保署,網址 : https://www.epa.gov.tw/Page/8514DFCAB3529136,2021年。
吳中興,李志萍,使用旋轉窯焚化爐焚化稻殼之數值模擬分析,農業機械學刊,13(1),17-32,(2004)
呂承翰,應用氣化技術轉換含鋁廢棄物為能源與回收鋁之評估研究,逢甲大學博士論文,2018。
姚彥丞,江康鈺,呂承翰,塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究, 中華民國環境工程學會2017廢棄物處理技術研討會,臺北, 2017。
魏君穎,含溴玻璃纖維裂解產能及污染物去除之可行性評估研究,國立中央大學環境工程研究所,碩士論文,桃園市,2019。 |