博碩士論文 107326023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:3.15.34.244
姓名 陳宣宇(Hsuan-Yu Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 含鋁塑膠包裝廢棄物熱處理回收鋁及能源之可行性研究
(Feasibility of recovery of aluminum and energy from plastic packaging containing aluminum by thermal technology)
相關論文
★ 大學生對綠建材認知與態度之研究★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究
★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性
★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究
★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究★ 污水處理廠逸散微粒之物理、化學及生物特性分析
★ 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析
★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估★ 應用高溫淨化技術提昇廢水污泥與沼渣共氣化產能效率及 重金屬去除之評估研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-1以後開放)
摘要(中) 本研究分別利用固定床熱裂解、旋轉窯熱裂解及旋轉窯氣化反應系統,評估含鋁塑膠包裝廢棄物能源轉換效率及鋁回收之可行性。試驗條件主要包括熱裂解溫度450、500、550及600℃,以及旋轉窯傾斜斜率0.052與0.067;此外,氣化反應溫度控制為600℃及當量比(Equivalence ratio, ER)為0.1、0.2、0.3之條件。為進一步釐清含鋁塑膠包裝廢棄物之資能源再利用特性,研究將探討產物產率、產物特性、鋁回收效率與產能效率等項目。
研究結果顯示,固定床熱裂解產油率最高,約為43.09 wt.%,而旋轉窯熱裂解產油率,隨著熱裂解溫度增加而減少,約介於2.17至26.18 wt.%。至於旋轉窯氣化反應之裂解油產率,則隨著當量比(ER)增加而增加,產率約介於0.41至0.62 wt.%。根據裂解油之化合物組成分析結果顯示,固定床熱裂解反應產生之裂解油組成,以脂肪族化合物為主;而旋轉窯熱裂解產生之裂解油,則以含氧化合物為主。至於旋轉窯氣化反應所衍生之裂解油,主要化合物亦為含氧化合物,且隨ER值增加,而轉變為芳香族化合物為主。
經由熱裂解反應後回收鋁之分析結果顯示,以溫度450℃及500℃之鋁回收率最佳,其中旋轉窯熱裂解反應系統之鋁回收率最高,可達到93.29 wt.%。若改以旋轉窯氣化反應系統,不論ER值為0.1至0.3,鋁回收率均較熱裂解系統為低,約介於49.24 wt.%至54.53 wt.%。至於回收鋁的純度分析結果顯示,以旋轉窯熱裂解反應系統而言,回收鋁之純度最高可達86.03~92.79%,至於旋轉窯氣化反應系統,則由於供氧氣之影響,致使回收鋁之純度降低至16.68~33.21%。根據XRD及SEM/EDS分析結果可知,回收鋁除為金屬鋁成分外,亦發現金屬鋁之氧化物等物種存在,致使回收鋁之純度降低。整體而言,本研究不僅建立含鋁塑膠包裝廢棄物之基本特性分析,同時應用固定床與旋轉窯反應系統,進行熱裂解及氣化反應,研究成果已成功驗證旋轉窯熱裂解反應系統,有助於提升鋁回收及能源應用之效率,後續若能進一步驗證規模放大之可行性,將有助於含鋁塑膠包裝廢棄物之回收與再利用處理技術選擇之參考。
摘要(英) This research investigates the energy conversion efficiency and aluminum recovery of aluminum-containing plastic packaging waste by the fixed-bed pyrolysis, rotary kiln pyrolysis, and rotary kiln gasification systems. The experimental conditions mainly included pyrolysis temperatures of 450, 500, 550, and 600℃ and rotary kiln slopes of 0.052 and 0.067. In addition, the gasification temperature is controlled at 600°C, and the equivalence ratio (ER) is 0.1, 0.2, and 0.3, respectively. The conversion products yield, products characteristics, aluminum recovery efficiency, and energy yield are evaluated for understanding the feasibility of aluminum-containing plastic packaging waste recycling and energy recovery.
The experimental results indicated that the higher pyrolytic oil yield was approximately 43.09 wt% by the fixed bed pyrolysis. In the case of the rotary kiln pyrolysis, pyrolytic oil yield was decreased with an increase in the temperature as well the oil yield ranged between 2.17 wt% and 26.18 wt.%. However, the pyrolytic oil is also significantly reduced with the equivalence ratio (ER) increasing as well the range between 0.41 wt% to 0.62 wt% by rotary kiln gasification. According to the results of pyrolysis oil speciation, the oil speciation produced by the fixed-bed pyrolysis is mainly aliphatic compounds as well the oil-containing oxygen compounds produced by the rotary kiln pyrolysis and gasification. However, the oil containing oxygen compounds will significantly convert to the aromatic compounds as the ER value increases during the rotary kiln gasification.
The aluminum recovery results indicated that the highest aluminum recovery rate is approximately 93.29 wt % by rotary kiln pyrolysis operated at the temperature of 450℃ and 500℃. However, the aluminum recovery rate will decrease to 49.24-54.53 wt.% resulted in the rotary kiln gasification application. The recovered aluminum purity ranged between 86.03% and 92.79% using the rotary kiln pyrolysis system. In the rotary kiln gasification system, the recovered aluminum purity decreased significantly to 16.68-33.21%, resulting in the aluminum oxide derived by oxygen supply. Based on the XRD and SEM/EDS analysis results, it can confirm that the aluminum speciation as well aluminum oxide also presented in the recovered aluminum.
In summary, this research establishes the characteristics of aluminum-containing plastic packaging waste and studies the feasibility of aluminum and energy recovery by the pyrolysis and gasification using the fixed bed and rotary kiln system. The research has successfully verified the enhancement of aluminum recovery and energy production by pyrolysis using the rotary kiln system. Further research can successfully confirm the scale-up tests in the future. It will be helpful for the selection of recycling and reuse treatment technology for aluminum-containing plastic packaging waste.
關鍵字(中) ★ 含鋁塑膠包裝廢棄物
★ 熱裂解反應
★ 氣化反應
★ 固定床
★ 旋轉窯
★ 鋁回收率
關鍵字(英) ★ aluminum-containing plastic packaging waste
★ pyrolysis
★ gasification
★ fixed bed
★ rotary kiln
★ recovered aluminum
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
表目錄 ix
圖目錄 xi
第一章 前言 1
第二章 文獻回顧 5
2-1 塑膠廢棄物現況分析 5
2-2 含鋁塑膠包裝廢棄物資源化處理技術 9
2-2-1 氣化技術 10
2-2-2 熱裂解技術 12
2-2-3 熱裂解產物影響因素 15
第三章 研究材料與方法 23
3-1 試驗材料 23
3-2 實驗方法 24
3-2-1 實驗設備 24
3-2-2 操作條件與實驗步驟 25
3-2-3 分析項目與方法 32
3-2-4 產物特性分析 35
3-2-5 質量平衡 39
第四章 結果與討論 41
4-1 材料之基本特性分析 41
4-2 熱動力反應特性 43
4-2-1熱重損失及最大失重率變化結果 43
4-2-2反應特性及活化能分析 44
4-2-3反應過程氣相物種之官能基分析 48
4-3 產物產量分析結果 49
4-3-1固定床熱裂解反應之重複試驗結果 49
4-3-2產物之質量平衡 50
4-3-3產物分佈特性之分析結果 60
4-4 熱處理衍生產物特性分析 67
4-4-1固體產物之特性分析 67
4-4-2液體產物之特性分析 70
4-4-3氣體產物之特性分析 91
4-5 裂解油之GC-MS分析結果 99
4-6 回收鋁之特性分析 118
4-6-1固體殘餘物之表面微觀結構及物種比較分析 118
4-6-2固體殘餘物之鋁回收特性 128
4-7 產能效率評估 131
第五章 結論與建議 143
5-1結論 143
5-1-1含鋁塑膠包裝廢棄物基本特性分析結果 143
5-1-2產物分佈之影響 144
5-1-3裂解油之化合物影響 145
5-1-4含鋁塑膠包裝廢棄物回收鋁之回收成效 145
參考文獻 147
附錄 157
參考文獻 Acevedo, B., & Barriocanal, C. (2015). The influence of the pyrolysis conditions in a rotary oven on the characteristics of the products. Fuel Processing Technology, 131, 109-116.
Açıkalın, K., Karaca, F., & Bolat, E. (2012). Pyrolysis of pistachio shell: Effects of pyrolysis conditions and analysis of products. Fuel, 95, 169-177.
Ágnes, N., & Rajmund, K. U. T. I. (2016). The environmental impact of plastic waste incineration. AARMS–Academic and Applied Research in Military and Public Management Science, 15(3), 231-237.
Al-Salem, S. M., Antelava, A., Constantinou, A., Manos, G., & Dutta, A. (2017). A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). Journal of Environmental Management, 197, 177-198.
Al-Salem, S. M. (2019). Thermal pyrolysis of high density polyethylene (HDPE) in a novel fixed bed reactor system for the production of high value gasoline range hydrocarbons (HC). Process Safety and Environmental Protection, 127, 171-179.
Areeprasert, C., Asingsamanunt, J., Srisawat, S., Kaharn, J., Inseemeesak, B., Phasee, P., Khaobang, C., Siwakosit, W., & Chiemchaisri, C. (2017). Municipal plastic waste composition study at transfer station of Bangkok and possibility of its energy recovery by pyrolysis. Energy Procedia, 107, 222-226.
Arena, U., Zaccariello, L., & Mastellone, M. L. (2010). Fluidized bed gasification of waste-derived fuels. Waste Management, 30(7), 1212-1219.
Aylón, E., Fernández-Colino, A., Murillo, R., Navarro, M. V., García, T., & Mastral, A. M. (2010). Valorisation of waste tyre by pyrolysis in a moving bed reactor. Waste Management, 30(7), 1220-1224.
Berger, K. R. (2003). A brief history of packaging. EDIS, 2003(17).
Boateng, A. A., & Barr, P. V. (1996). A thermal model for the rotary kiln including heat transfer within the bed. International Journal of Heat and Mass Transfer, 39(10), 2131-2147.
Budsaereechai, S., Hunt, A. J., & Ngernyen, Y. (2019). Catalytic pyrolysis of plastic waste for the production of liquid fuels for engines. RSC advances, 9(10), 5844-5857.
Burnley, S. J. (2007). A review of municipal solid waste composition in the United Kingdom. Waste management, 27(10), 1274-1285.
Chandran, M., Tamilkolundu, S., & Murugesan, C. (2020). Conversion of plastic waste to fuel. In Plastic Waste and Recycling (pp. 385-399). Academic Press, United States.
Chawdhury, M. A., & Mahkamov, K. (2011). Development of a small downdraft biomass gasifier for developing countries. Journal of scientific research, 3(1), 51-51.
Coats, A. W., & Redfern, J. P. (1964). Kinetic parameters from thermogravimetric data. Nature, 201, 68-69.
Czajczyńska, D., Anguilano, L., Ghazal, H., Krzyżyńska, R., Reynolds, A. J., Spencer, N., & Jouhara, H. (2017). Potential of pyrolysis processes in the waste management sector. Thermal Science and Engineering Progress, 3, 171-197.
Dahlbo, H., Poliakova, V., Mylläri, V., Sahimaa, O., & Anderson, R. (2018). Recycling potential of post-consumer plastic packaging waste in Finland. Waste management, 71, 52-61.
Das, P., & Tiwari, P. (2018). Valorization of packaging plastic waste by slow pyrolysis. Resources, Conservation and Recycling, 128, 69-77.
De Conto, D., Silvestre, W. P., Baldasso, C., & Godinho, M. (2016). Performance of rotary kiln reactor for the elephant grass pyrolysis. Bioresource Technology, 218, 153-160.
Deshwal, G. K., & Panjagari, N. R. (2020). Review on metal packaging: Materials, forms, food applications, safety and recyclability. Journal of food science and technology, 57(7), 2377-2392.
Díez, C., Sánchez, M. E., Haxaire, P., Martínez, O., & Morán, A. (2005). Pyrolysis of tyres: A comparison of the results from a fixed-bed laboratory reactor and a pilot plant (rotatory reactor). Journal of Analytical and Applied Pyrolysis, 74(1-2), 254-258.
ECHA Mapping exercise - plastic additives initiative, website:https://echa.europa.eu/mapping-exercise-plastic-additives-initiative
Fan, L., Zhang, Y., Liu, S., Zhou, N., Chen, P., Cheng, Y., Addy, M., Lu, Q., Omar, M., Liu, Y., Wang, Y., Dai, L., Anderson, E., Peng, P., Lei, H., & Ruan, R. (2017). Bio-oil from fast pyrolysis of lignin: Effects of process and upgrading parameters. Bioresource technology, 241, 1118-1126.
Fossum, M., Beyer, R. V., & Bioenergy, I. (1998). Co-combustion: Biomass fuel gas and natural gas. SINTEF Energy Research, Trondheim.
Galvagno, S., Fortuna, F., Cornacchia, G., Casu, S., Coppola, T., Sharma, V. K. (2001). Pyrolysis process for treatment of automobile shredder residue: preliminary experimental results. Energy Conversion and Management, 42(5), 573-586.
Jin, Q., Wang, X., Li, S., Mikulčić, H., Bešenić, T., Deng, S., Vujanović, M., Tan, H., & Kumfer, B. M. (2019). Synergistic effects during co-pyrolysis of biomass and plastic: Gas, tar, soot, char products and thermogravimetric study. Journal of the energy institute, 92(1), 108-117.
Kamboj, N., Bisht, A., Kamboj, V., & Bisht, A. (2020). Leachate disposal induced groundwater pollution: A threat to drinking water scarcity and its management.
Kehinde, O., Ramonu, O. J., Babaremu, K. O., & Justin, L. D. (2020). Plastic wastes: environmental hazard and instrument for wealth creation in Nigeria. Heliyon, 6(10), e05131.
Kim, S., Jang, E. S., Shin, D. H., & Lee, K. H. (2004). Using peak properties of a DTG curve to estimate the kinetic parameters of the pyrolysis reaction: application to high density polyethylene. Polymer Degradation and Stability, 85(2), 799-805.
Kiran, N., Ekinci, E., & Snape, C. E. (2000). Recyling of plastic wastes via pyrolysis. Resources, Conservation and Recycling, 29(4), 273-283.
Kumar, A., Jones, D. D., & Hanna, M. A. (2009). Thermochemical biomass gasification: a review of the current status of the technology. Energies, 2(3), 556-581.
Law, K. L., Starr, N., Siegler, T. R., Jambeck, J. R., Mallos, N. J., & Leonard, G. H. (2020). The United States’ contribution of plastic waste to land and ocean. Science advances, 6(44), eabd0288.
Letcher, T. M. (2020). Introduction to plastic waste and recycling. In Plastic Waste and Recycling (pp. 3-12). Academic Press.
Li, A. M., Li, X. D., Li, S. Q., Ren, Y., Chi, Y., Yan, J. H., & Cen, K. F. (1999). Pyrolysis of solid waste in a rotary kiln: influence of final pyrolysis temperature on the pyrolysis products. Journal of Analytical and Applied Pyrolysis, 50(2), 149-162.
Li, S. Q., Yan, J. H., Li, R. D., Chi, Y., & Cen, K. F. (2002). Axial transport and residence time of MSW in rotary kilns: Part I. Experimental. Powder technology, 126(3), 217-227.
Li, S. Q., Yao, Q., Chi, Y., Yan, J. H., & Cen, K. F. (2004). Pilot-scale pyrolysis of scrap tires in a continuous rotary kiln reactor. Industrial & engineering chemistry research, 43(17), 5133-5145.
López, A., De Marco, I., Caballero, B. M., Laresgoiti, M. F., & Adrados, A. (2011). Influence of time and temperature on pyrolysis of plastic wastes in a semi-batch reactor. Chemical Engineering Journal, 173(1), 62-71.
López, G. A. R. T. Z. E. N., Alvarez, J., Amutio, M. A. I. D. E. R., Mkhize, N. M., Danon, B., Van der Gryp, P., ... & Olazar, M. A. R. T. I. N. (2017). Waste truck-tyre processing by flash pyrolysis in a conical spouted bed reactor. Energy Conversion and Management, 142, 523-532.
Lu, C.H., Chiang, K.Y., 2017. Gasification of non-recycled plastic packaging material containing aluminum: Hydrogen energy production and aluminum recovery. International Journal of Hydrogen Energy, 42(45), 27532-27542.
Luo, X. T., Wang, Z. Q., Wu, J. L., & Wu, J. H. (2012). Study on the pyrolysis mechanism of polyethylene, polystyrene, and polyvinyl chloride by TGA-FTIR. Journal of Fuel Chemistry and Technology, 40(9), 1147-1152.
Ma, S., Leong, H., He, L., Xiong, Z., Han, H., Jiang, L., Wang, Y., Hu, S., Su, S., & Xiang, J. (2020). Effects of pressure and residence time on limonene production in waste tires pyrolysis process. Journal of Analytical and Applied Pyrolysis, 151, 104899.
Mangesh, V. L., Padmanabhan, S., Tamizhdurai, P., & Ramesh, A. (2020). Experimental investigation to identify the type of waste plastic pyrolysis oil suitable for conversion to diesel engine fuel. Journal of Cleaner Production, 246, 119066.
Mapping exercise - plastic additives initiative, https://echa.europa.eu/de/mapping-exercise-plastic-additives-initiative (2021)
Martínez-Lera, S., Torrico, J., Pallarés, J., & Gil, A. (2013). Thermal valorization of post-consumer film waste in a bubbling bed gasifier. Waste management, 33(7), 1640-1647.
Mastral, F. J., Esperanza, E., Garcıa, P., & Juste, M. (2002). Pyrolysis of high-density polyethylene in a fluidised bed reactor. Influence of the temperature and residence time. Journal of Analytical and Applied Pyrolysis, 63(1), 1-15.
Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., & Nizami, A. S. (2016a). Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection, 102, 822-838.
Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., Ismail, I. M. I., & Nizami, A. S. (2017b). Effect of plastic waste types on pyrolysis liquid oil. International biodeterioration & biodegradation, 119, 239-252.
Miandad, R., Barakat, M. A., Rehan, M., Aburiazaiza, A. S., Ismail, I. M. I., & Nizami, A. S. (2017a). Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts. Waste Management, 69, 66-78.
Miandad, R., Nizami, A. S., Rehan, M., Barakat, M. A., Khan, M. I., Mustafa, A., Ismail, I. M. I., & Murphy, J. D. (2016b). Influence of temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid oil. Waste Management, 58, 250-259.
Mumladze, T., Yousef, S., Tatariants, M., Kriūkienė, R., Makarevicius, V., Lukošiūtė, S. I., ... & Denafas, G. (2018). Sustainable approach to recycling of multilayer flexible packaging using switchable hydrophilicity solvents. Green Chemistry, 20(15), 3604-3618.
Niaounakis, M. (2020). In M. Niaounakis (Ed.), Recycling of Flexible Plastic Packaging (pp. 211-264): William Andrew Publishing.
Nieminen, J., Anugwom, I., Kallioinen, M., & Mänttäri, M. (2020). Green solvents in recovery of aluminium and plastic from waste pharmaceutical blister packaging. Waste Management, 107, 20-27.
Ningbo, G., Baoling, L., Aimin, L., & Juanjuan, L. (2015). Continuous pyrolysis of pine sawdust at different pyrolysis temperatures and solid residence times. Journal of analytical and applied pyrolysis, 114, 155-162.
Onwudili, J. A., Insura, N., & Williams, P. T. (2009). Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time. Journal of Analytical and Applied Pyrolysis, 86(2), 293-303.
Park, K. B., Jeong, Y. S., Guzelciftci, B., & Kim, J. S. (2019). Characteristics of a new type continuous two-stage pyrolysis of waste polyethylene. Energy, 166, 343-351.
Pinto, F., Costa, P., Gulyurtlu, I., & Cabrita, I. (1999). Pyrolysis of plastic wastes. 1. Effect of plastic waste composition on product yield. Journal of Analytical and Applied Pyrolysis, 51(1-2), 39-55.
PlasticsEurope, 2020. Plastics - The Facts 2020: An Analysis of European Plastics. website: https://www.plasticseurope.org/download_file/view/4829/179
Prawisudha, P., Mu’min, G. F., Yoshikawa, K., & Pasek, A. D. (2014). Experimental Study on Separation of Metal Layer in Aluminum-plastic Packaging by Employing Hydrothermal Process. Department of Mechanical Engineering, Institut Teknologi Bandung.
Pruksakit, W., Dejterakulwong, C., & Patumsawad, S. (2014, November). Performance prediction of a downdraft gasifier using equilibrium model: effect of different biomass. In Proceedings of the 5th international conference on sustainable energy and environment (SEE: Science, Technology and Innovation for ASEAN Green Growth, Bangkok, Thailand, 19-21.
Rousta, K., Zisen, L., & Hellwig, C. (2020). Household Waste Sorting Participation in Developing Countries—A Meta-Analysis. Recycling, 5(1), 6.
Sansaniwal, S. K., Pal, K., Rosen, M. A., & Tyagi, S. K. (2017). Recent advances in the development of biomass gasification technology: A comprehensive review. Renewable and sustainable energy reviews, 72, 363-384.
Sharuddin, S. D. A., Abnisa, F., Daud, W. M. A. W., & Aroua, M. K. (2016). A review on pyrolysis of plastic wastes. Energy conversion and management, 115, 308-326.
Sharuddin, S. D. A., Abnisa, F., Daud, W. M. A. W., & Aroua, M. K. (2017). Energy recovery from pyrolysis of plastic waste: Study on non-recycled plastics (NRP) data as the real measure of plastic waste. Energy conversion and management, 148, 925-934.
Singh, T. S., Verma, T. N., & Singh, H. N. (2020). A lab scale waste to energy conversion study for pyrolysis of plastic with and without catalyst: Engine emissions testing study. Fuel, 277, 118176.
Sohaib, Q., Habib, M., Fawad Ali Shah, S., Habib, U., & Ullah, S. (2017). Fast pyrolysis of locally available green waste at different residence time and temperatures. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(15), 1639-1646.
Tiikma, L., Tamvelius, H., & Luik, L. (2007). Coprocessing of heavy shale oil with polyethylene waste. Journal of analytical and applied pyrolysis, 79(1-2), 191-195.
Tsai, W. T. (2021). Analysis of plastic waste reduction and recycling in Taiwan. Waste Management & Research, 39(5), 713-719.
Tulashie, S. K., Boadu, E. K., & Dapaah, S. (2019). Plastic waste to fuel via pyrolysis: A key way to solving the severe plastic waste problem in Ghana. Thermal Science and Engineering Progress, 11, 417-424.
Williams, P. T., & Williams, E. A. (1999). Fluidised bed pyrolysis of low density polyethylene to produce petrochemical feedstock. Journal of Analytical and Applied Pyrolysis, 51(1-2), 107-126.
Xiao, R., Jin, B., Zhou, H., Zhong, Z., & Zhang, M. (2007). Air gasification of polypropylene plastic waste in fluidized bed gasifier. Energy Conversion and Management, 48(3), 778-786.
Yazdani, E., Hashemabadi, S. H., & Taghizadeh, A. (2019). Study of waste tire pyrolysis in a rotary kiln reactor in a wide range of pyrolysis temperature. Waste Management, 85, 195-201.
Yousef, S., Eimontas, J., Zakarauskas, K., & Striūgas, N. (2021). Microcrystalline paraffin wax, biogas, carbon particles and aluminum recovery from metallised food packaging plastics using pyrolysis, mechanical and chemical treatments. Journal of Cleaner Production, 290, 125878.
Yousef, S., Mumladze, T., Tatariants, M., Kriūkienė, R., Makarevicius, V., Bendikiene, R., & Denafas, G. (2018). Cleaner and profitable industrial technology for full recovery of metallic and non-metallic fraction of waste pharmaceutical blisters using switchable hydrophilicity solvents. Journal of Cleaner Production, 197, 379-392.
Zhang, S. F., Zhang, L. L., Luo, K., Sun, Z. X., & Mei, X. X. (2014). Separation properties of aluminium–plastic laminates in post-consumer Tetra Pak with mixed organic solvent. Waste Management & Research, 32(4), 317-322.
Zhang, Y., Ji, G., Chen, C., Wang, Y., Wang, W., & Li, A. (2020). Liquid oils produced from pyrolysis of plastic wastes with heat carrier in rotary kiln. Fuel Processing Technology, 206, 106455.
Zhou, Y., Liu, Q., Zhao, Y., & Li, W. (2018, June). Aluminum Foil Packaging Sealing Testing Method Based on Gabor Wavelet and ELM Neural Network. In Proceedings of the 2nd International Conference on Advances in Image Processing (pp. 59-63).
Zolfagharpour, H. R., Nowrouz, P., Mohseni‐Bandpei, A., Majlesi, M., Rafiee, M., & Khalili, F. (2020). Influences of temperature, waste size and residence time on the generation of polycyclic aromatic hydrocarbons during the fast pyrolysis of medical waste. Caspian Journal of Environmental Sciences, 18(1), 47-57.
江康鈺,張宏愷,呂承翰,應用氣化處理技術回收鋁箔包資能源之可行性評估,中華民國環境工程學會2015廢棄物處理技術研討會,桃園,2015。
行政院環保署,網址 : https://www.epa.gov.tw/Page/8514DFCAB3529136,2021年。
吳中興,李志萍,使用旋轉窯焚化爐焚化稻殼之數值模擬分析,農業機械學刊,13(1),17-32,(2004)
呂承翰,應用氣化技術轉換含鋁廢棄物為能源與回收鋁之評估研究,逢甲大學博士論文,2018。
姚彥丞,江康鈺,呂承翰,塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究, 中華民國環境工程學會2017廢棄物處理技術研討會,臺北, 2017。
魏君穎,含溴玻璃纖維裂解產能及污染物去除之可行性評估研究,國立中央大學環境工程研究所,碩士論文,桃園市,2019。 
指導教授 江康鈺(Kung-Yuh Chiang) 審核日期 2021-10-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明