博碩士論文 108326008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.15.197.123
姓名 黃婷鈺(Ting-Yu Huang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以反應曲面法探討流體化床結晶回收磷酸亞鐵之影響因子
(Research on the influence factors of ferrous phosphate crystal recovery in a fluidized bed by response surface method)
相關論文
★ 以SDI與MFI指標評估工業廢水回收再利用之機會:以某散熱器製造業為例★ 活性污泥異營與自營脫硝 反應動力特性之研究
★ 沼渣施用對土壤及滲出水之重金屬成份影響分析★ 脈衝式曝氣對沉浸式薄膜生物處理系統 積垢控制之探討
★ 以聚合硫酸鐵進行污泥調理脫水之綜合效能評估★ 以低亞硫酸鈉進行自營性脫硝反應之可行性研究
★ 污泥脫水濾液無機物成分之結垢潛勢研究★ 硫氮比、pH與溶氧對還原性硫化物自營脫硝反應之影響
★ 以海水提升流體化床磷酸銨鎂結晶 之可行性研究★ 超音波水解生物污泥機制探討
★ 生物除氮程序(MLE Process)效能評估及污泥活性探討★ 活性污泥除氮程序(OAO Process)效能評估與設計參數探討
★ 廢水處理廠 COD 和 TN 水質細分類 與脫硝效率之研究★ 硫代硫酸鹽自營性脫硝之反應動力與亞硝酸鹽氮累積特性探討
★ 以RO濃排水提升流體化床磷酸鹽結晶之可行性研究★ 以超聲波輔助化學氧化法處理廢棄 NF 膜之反應特性與膜再利用可行性評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用反應曲面法(Response Surface Method, RSM)之中央合成設計(Central Composite Design, CCD)探討磷酸亞鐵流體化床結晶操作條件,如pH, Fe/P molar ratio, Zn/P molar ratio等影響因子,對結晶程序之影響,並且將結果最佳化後找出最佳結晶條件,以提升結晶效率。
首先,本研究在濃度100 mg-PO4-3-P/L下藉由CCD實驗進行磷酸亞鐵合成廢水化學沉澱試驗,最佳化後結果顯示,當pH = 7.6, Fe/P molar ratio = 2.5時,去除率可達100 %,由此結果可以初步得知在pH中性且Fe/P大於理論條件1.5時,可以有形成成磷酸亞鐵物種固體沉澱物。將上述所得之CCD實驗條件進入結晶試驗階段探討最佳化後實驗操作參數,並且將此結果進行連續穩定試驗。CCD實驗結果顯示,操作因子pH及Fe/P molar ratio明顯影響結晶率,隨著pH及Fe/P molar ratio的增加PC跟著上升,然而在實驗過程中雖然提升pH及Fe/P molar ratio有利於磷酸亞鐵結晶,但是當操作因子提升過量時,因系統中產生大量膠羽,將不利於磷酸亞鐵晶體的形成,對結晶程序產生干擾而導致結晶效率下降。而將CCD實驗結果最佳化分析後顯示當pH=6.8, Fe/P molar ratio=1.9時,結晶率可達60.24 %。並且為了結合實際應用,本研究將某污水處理廠之放流水所得之最佳結晶結果與合成廢水進一步進行比較後發現,實廠廢水最佳結晶率比合成廢水高20 %,推測原因為實際廢水中雜質吸附於晶體後降低晶體表面自由能,又或者是存在陽離子而促使結晶率提升。
另一方面本研究欲探討當在磷酸亞鐵結晶程序中添加微量鋅離子時是否對結晶有影響,藉由CCD實驗進行化學沉澱試驗,結果顯示相較於未添加Zn離子時之實驗,整體磷去除率有上升之現象。然而,結晶批次試驗結果顯示,添加鋅離子後,結晶效率並不佳,最高結晶率也只能達到47 %左右,推測原因為結晶時雜質金屬物質附著於晶體表面會提高能量屏障,使結晶更加困難,且當金屬離子濃度過高時,會導致系統呈現高度過飽和狀態,而大量成核,微晶體容易被出流水帶走,故導致結晶效率相較於未添加時下降許多,結果顯示添加鋅離子對結晶產生極大的干擾。
由上述研究結果可得知找出最佳pH及Fe/P molar ratio有利於提升PC,並且可以避免過量藥劑的浪費,有效控制成本,而所得到的磷酸亞鐵結晶珠可以進行回收再利用,當溶液中存在鋅離子時,不利於磷酸亞鐵結晶,故建議可先去選擇性去除鋅離子後再進行磷酸亞鐵結晶,以提升結晶效率及結晶純度。
摘要(英) In this study, the Central Composite Design (CCD) of Response Surface Method (RSM) was used to explore the operating conditions of ferrous phosphate fluidized bed crystallization.Influencing factors such as pH, Fe/P molar ratio, Zn/P molar ratio explore their influence on the crystallization process, and find the best crystallization conditions after optimizing the results to improve crystallization efficiency.
First of all, this study conducted a chemical precipitation test of ferrous phosphate synthetic wastewater by CCD experiment at a concentration of 100 mg-PO4-3-P/L. The optimized results show that when pH = 7.6 and Fe/P molar ratio = 2.5, the removal efficiency can reach 100 %. From this result, we can preliminarily know that when the pH is neutral and Fe/P is greater than the theoretical condition 1.5, it can be a solid precipitate formed as ferrous phosphate species. The CCD experimental conditions obtained above were entered into the crystallization experiment stage to discuss the optimized experimental operating parameters, and the results were subjected to continuous and stable experiments. The CCD experiment results show that the operating factors pH and Fe/P molar ratio significantly affect the crystallization efficiency. As the pH and Fe/P molar ratio increase, PC increases.However, during the experiment, increasing the pH and Fe/P molar ratio is beneficial ferrous phosphate crystals, but when the operating factor is increased excessively, a large amount of flocs will be produced in the system, which will not be conducive to the formation of ferrous phosphate crystals, which will interfere with the crystallization process and cause the crystallization efficiency to decrease. The optimized analysis of CCD experiment results showed that when pH=6.8, Fe/P molar ratio=1.9, the crystallization efficiency can reach 60.24 %.
On the other hand, this study intends to explore whether adding a trace amount of zinc ions in the crystallization process of ferrous phosphate has an effect on the crystallization. The chemical precipitation experiment was carried out by CCD experiment. The result showed that compared with the experiment without zinc ions, the overall phosphorus removal efficiency increased presumably. However, the crystallization batch experiment results show that the crystallization efficiency is not good after the addition of zinc ions, and the best high crystallization efficiency can only reach about 47 %. It is inferred that the reason is that impurity metal substances attached to the crystal surface during crystallization will increase the energy barrier and make crystallization more difficult.And when the concentration of metal ions is too high, it will cause the system to be highly supersaturated, and a large number of nucleation, the fine crystals are easily taken away by the outflow water, so the crystallization efficiency is much lower than when it is not added.The result shows that the addition of zinc ions is very interference to crystallization.
From the above research results, it can be known that finding the optimal pH and Fe/P molar ratio is beneficial to increase PC, and can avoid the waste of excessive chemicals, and effectively control the cost. The obtained ferrous phosphate crystals can be recycled and reused. When zinc ions are present in the solution, it is not conducive to the crystallization of ferrous phosphate. Therefore, it is recommended to selectively remove the zinc ions before crystallization of ferrous phosphate to improve crystallization efficiency and crystal purity.
關鍵字(中) ★ 反應曲面法
★ 中央合成設計
★ 磷酸亞鐵結晶
★ 流體化床
★ 回收磷
關鍵字(英)
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 ix
表目錄 xii
第一章 前言 1
1-1 研究緣起 1
1-2 研究動機與方法 2
1-3 研究目的與內容 3
第二章 文獻回顧 4
2-1 磷酸鹽特性 4
2-2 磷的流佈 6
2-2-1 台灣磷流佈 6
2-2-2 國外磷流佈 8
2-3 磷回收技術 9
2-4 流體化床結晶原理 11
2-4-1 結晶與沉澱 11
2-4-2 結晶成核與成長 13
2-4-3 影響磷結晶的操作參數 17
2-5 磷酸亞鐵結晶特性 21
2-5-1 磷酸亞鐵結晶之原理與機制 21
2-5-2 磷酸亞鐵結晶之特性與應用 23
2-6 雜質對結晶技術影響機制 25
2-6-1 雜質對晶體物化特性之干擾 25
2-6-2 雜質對晶體表面形態之干擾 25
2-6-3 鋅離子之化學特性 27
2-6-4 鋅離子對結晶之影響 28
第三章 研究材料與方法 29
3-1 實驗架構 29
3-2 實驗設備與材料 31
3-2-1 實驗設備 31
3-2-2 流體化床操作條件 32
3-2-3 實驗藥品 35
3-3 化學沉澱與結晶試驗方法 36
3-3-1 化學沉澱法試驗 36
3-3-2 流體化床結晶試驗 37
3-4 反應曲面法(Response Surface Method, RSM) 39
3-4-1 中央合成設計(Central composite design experiments, CCD) 41
3-4-2 實驗設計 43
3-4-3 RSM-CCD分析方法 45
3-5 實驗效能評估計算 50
3-6 分析設備介紹 52
3-6-1 分光光度計(UV) 52
3-6-2 掃描式電子顯微鏡(SEM) 53
3-6-3 X光繞射分析儀(XRD) 53
3-6-4 元素分析(EDS) 54
3-6-5 篩分析 54
第四章 結果與討論 55
4-1 磷酸亞鐵化學沉澱批次試驗 55
4-1-1磷酸亞鐵化學沉澱反應曲面分析-磷去除率最佳化分析 56
4-1-2 pH及Fe/P molar ratio對磷酸亞鐵化學沉澱之影響 61
4-2 磷酸亞鐵結晶批次試驗 64
4-2-1 磷酸亞鐵結晶批次試驗反應曲面分析-磷去除率與結晶率最佳化分析 65
4-2-2 pH及Fe/P molar ratio對磷酸亞鐵結晶批次試驗之影響-磷去除率與結晶率 74
4-3 磷酸亞鐵流體化床結晶連續性穩定試驗 83
4-3-1 磷酸亞鐵-結晶體晶相分析 86
4-3-2 磷酸亞鐵-結晶體表面型態觀察 87
4-3-3 磷酸亞鐵-結晶體元素分析 89
4-3-4 磷酸亞鐵-結晶體粒徑分布 90
4-4 鋅離子對磷酸亞鐵化學沉澱之影響 93
4-4-1 鋅離子對磷酸亞鐵沉澱反應曲面分析-磷去除率最佳化分析 94
4-4-2磷酸亞鐵化學沉澱之影響因子 – pH、Fe/P molar ratio、Zn/P molar ratio 101
4-5 鋅離子對磷酸亞鐵結晶之影響 103
4-5-1鋅離子對磷酸亞鐵結晶反應曲面分析-磷去除率與結晶率最佳化分析 103
4-5-2 磷酸亞鐵流體化床結晶之影響因子 – pH、Fe/P molar ratio、Zn/P molar ratio 111
第五章結論與建議 120
5-1 結論 120
5-2 建議 121
參考文獻 122
參考文獻 Asmal, E. and Saikku, L. (2010) Closing a loop: substance flow analysis of nitrogen and phosphorus in the rainbow trout production and domestic consumption system in Finland. Ambio 39(2), 126-135.
Bouropoulos, N.C. and Koutsoukos, P.G. (2000) Spontaneous precipitation of struvite from aqueous solutions. Journal of Crystal Growth 213(3-4), 381-388.
Caddarao, P.S., Garcia-Segura, S., Ballesteros, F.C., Huang, Y.-H. and Lu, M.-C. (2018) Phosphorous recovery by means of fluidized bed homogeneous crystallization of calcium phosphate. Influence of operational variables and electrolytes on brushite homogeneous crystallization. Journal of the Taiwan Institute of Chemical Engineers 83, 124-132.
Cieślik, B. and Konieczka, P. (2017) A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. Journal of Cleaner Production 142, 1728-1740.
Cordell, D., Drangert, J.-O. and White, S. (2009) The story of phosphorus: global food security and food for thought. Global environmental change 19(2), 292-305.
Crutchik, D. and Garrido, J.M. (2016) Kinetics of the reversible reaction of struvite crystallisation. Chemosphere 154, 567-572.
Dai, H., Lu, X., Peng, Y., Zou, H. and Shi, J. (2016) An efficient approach for phosphorus recovery from wastewater using series-coupled air-agitated crystallization reactors. Chemosphere 165, 211-220.
Dai, H., Tan, X., Zhu, H., Sun, T. and Wang, X. (2018) Effects of commonly occurring metal ions on hydroxyapatite crystallization for phosphorus recovery from wastewater. Water 10(11), 1619.
Dang, L., Wei, H., Zhu, Z. and Wang, J. (2007) The influence of impurities on phosphoric acid hemihydrate crystallization. Journal of crystal growth 307(1), 104-111.
Doran, P.M. (2013) Bioprocess Engineering Principles (Second Edition).
Egle, L., Rechberger, H., Krampe, J. and Zessner, M. (2016) Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. Science of the Total Environment 571, 522-542.
Flexer, V., Baspineiro, C.F. and Galli, C.I. (2018) Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing. Science of the Total Environment 639, 1188-1204.
Hinsinger, P. (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and soil 237(2), 173-195.
Huang, H., Li, B., Li, J., Zhang, P., Yu, W., Zhao, N., Guo, G. and Young, B. (2019) Influence of process parameters on the heavy metal (Zn2+, Cu2+ and Cr3+) content of struvite obtained from synthetic swine wastewater. Environmental pollution 245, 658-665.
Jones, A.M., Griffin, P.J., Collins, R.N. and Waite, T.D. (2014) Ferrous iron oxidation under acidic conditions–The effect of ferric oxide surfaces. Geochimica et Cosmochimica Acta 145, 1-12.
Kataki, S., West, H., Clarke, M. and Baruah, D.C. (2016) Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential. Resources, Conservation and Recycling 107, 142-156.
Koppelaar, R.H.E.M. and Weikard, H.P. (2013) Assessing phosphate rock depletion and phosphorus recycling options. Global Environmental Change 23(6), 1454-1466.
Le, V.-G., Vu, C.-T., Shih, Y.-J., Bui, X.-T., Liao, C.-H. and Huang, Y.-H. (2020) Phosphorus and potassium recovery from human urine using a fluidized bed homogeneous crystallization (FBHC) process. Chemical Engineering Journal 384, 123282.
Li, B., Udugama, I.A., Mansouri, S.S., Yu, W., Baroutian, S., Gernaey, K.V. and Young, B.R. (2019) An exploration of barriers for commercializing phosphorus recovery technologies. Journal of Cleaner Production 229, 1342-1354.
Liu, Y.C. and Nagy, Z.K. (2020) Continuous Pharmaceutical Processing, pp. 129-192, Springer.
Madsen, H.E.L. (2008) Influence of foreign metal ions on crystal growth and morphology of brushite (CaHPO4, 2H2O) and its transformation to octacalcium phosphate and apatite. Journal of Crystal Growth 310(10), 2602-2612.
Matynia, A., Koralewska, J., Wierzbowska, B. and Piotrowsk, K. (2006) The influence of process parameters on struvite continuous crystallization kinetics. Chemical Engineering Communications 193(2), 160-176.
Omar, W. and Ulrich, J. (2003) Influence of crystallization conditions on the mechanism and rate of crystal growth of potassium sulphate. Crystal Research and Technology: Journal of Experimental and Industrial Crystallography 38(1), 34-41.
Park, B. and Dempsey, B.A. (2004) Mechanisms of heterogeneous Fe(II) oxidation in acid mine drainage. Journal American Society of Mining and Reclamation 2004(1), 1408-1423.
Peng, L., Dai, H., Wu, Y., Peng, Y. and Lu, X. (2018) A comprehensive review of phosphorus recovery from wastewater by crystallization processes. Chemosphere 197, 768-781.
Priambodo, R., Shih, Y.-J. and Huang, Y.-H. (2017) Phosphorus recovery as ferrous phosphate (vivianite) from wastewater produced in manufacture of thin film transistor-liquid crystal displays (TFT-LCD) by a fluidized bed crystallizer (FBC)†.
S.Muryanto and A.P.Bayuseno (2014) Influence of Cu2+ and Zn2+ as additives on crystallization kinetics and morphology of struvite. Powder Technology 253, 602-607.
Sengupta, S., Nawaz, T. and Beaudry, J. (2015) Nitrogen and phosphorus recovery from wastewater. Current Pollution Reports 1(3), 155-166.
Shaddel, S., Ucar, S., Andreassen, J.-P. and W.Østerhus, S. (2019) Engineering of struvite crystals by regulating supersaturation–correlation with phosphorus recovery, crystal morphology and process efficiency. Journal of Environmental Chemical Engineering 7(1), 102918.
Shih, Y.-J., M.Abarca, R.R., Luna, M.D.G.d., Huang, Y.-H. and Lu, M.-C. (2017) Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: Effects of pH, phosphate concentration and coexisting ions.
Simoes, F., Vale, P., Stephenson, T. and Soares, A. (2018) Understanding the growth of the bio-struvite production Brevibacterium antiquum in sludge liquors. Environmental technology 39(17), 2278-2287.
Wang, H., Xiao, K., Yang, J., Yu, Z., Yu, W., Xu, Q., Wu, Q., Liang, S., Hu, J., Hou, H. and Liu, B. (2020) Phosphorus recovery from the liquid phase of anaerobic digestate using biochar derived from iron− rich sludge: A potential phosphorus fertilizer. Water research 174, 115629.
Wang, L. and Nancollas, G.H. (2008) Calcium orthophosphates: crystallization and dissolution. Chemical reviews 108(11), 4628-4669.
Wu, Y., Luo, J., Zhang, Q., Aleem, M., Fang, F., Xue, Z. and Cao, J. (2019) Potentials and challenges of phosphorus recovery as vivianite from wastewater: A review. Chemosphere 226, 246-258.
Yan, H., Chen, Q., Liu, J., Feng, Y. and Shih, K. (2018) Phosphorus recovery through adsorption by layered double hydroxide nano-composites and transfer into a struvite-like fertilizer. Water research 145, 721-730.
Yan, H. and Shih, K. (2016) Effects of calcium and ferric ions on struvite precipitation: A new assessment based on quantitative X-ray diffraction analysis. Water research 95, 310-318.
Yang, Y., Shi, X., Ballent, W. and Mayer, B.K. (2017) Biological Phosphorus Recovery: Review of Current Progress and Future Needs.
Zhang, M., Zheng, K., Jin, J., Yu, X., Qiu, L., Ding, S., Lu, H., Cai, J. and Zheng, P. (2013) Effects of Fe (II)/P ratio and pH on phosphorus removal by ferrous salt and approach to mechanisms. Separation and purification technology 118, 801-805.
吳峻豪 (2013) 流體化床磷酸銨鎂結晶回收污水處理廠磷之研究.
林李旺 (2018) 突破品質水準:實驗設計與田口方法之實務應用.
林惠玲 (1999) 應用統計學.
洪再生 (1996) 流體化床結晶技術回收廢水中重金屬銅之探討. 國立中央大學環境工程研究所碩士論文.
張鈞期 (2008) 不同金屬藥劑的流體化床結晶技術處理含磷廢水之研究.
莊順興 (2012) 下水道污泥含磷調查及最佳磷回收之研究.
楊騏彰 (2013) The Study of Phosphorus Recovery from WWTP by Fluid Bed Crystallization of Calcium Phosphate.
葉怡成 (2001) 實驗方法-製程與產品最佳化.
劉志忠( 1997) 流體化床結晶法去除水中磷酸鹽之研究. 國立中央大學環境工程研究所碩士論文.
指導教授 莊順興(Shun-Hing Chuang) 審核日期 2021-10-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明