博碩士論文 107326007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:54.204.142.235
姓名 陳垣維(Yuan-Wei Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 利用生物炭現地復育受多重重金屬污染之水稻田土壤
(Biochars for in situ remediation of paddy soil contaminated with multiple heavy metals)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 零價鐵與硫酸鹽的添加對於水田根圈環境汞 之生物有效性與菌相組成的影響★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究
★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究
★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)
★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著城市工業化及經濟產業蓬勃發展,伴隨而來的有害副產物更需被妥善處理。但近年屢屢發生工業重金屬廢水未經嚴格管末處理就任意排放到自然水體的案件,而這往往也是導致灌溉田地受到重金屬污染的根本原因。關於農地重金屬污染整治之策略,近年來許多學者主張以具環境友善性和低成本的土壤改良劑(例如:生物炭)來現地穩定稻田土壤中的重金屬,並且也已發展出許多種土壤改良劑。而當前需要思考的是,如何在已知的特定環境條件下,預先選擇出適合的土壤改良劑來進行土壤污染整治。因此,本研究將使用相關文獻所提及以等溫吸附研究為發想所建構的線性模型來預估不同生物炭對於現地穩定污染稻田土壤中鎘、銅、鋅之潛力,並且也會藉由土壤培養試驗觀察經施用不同生物炭後土壤孔隙水中重金屬的實際濃度變化。與此同時,將一併探討多重重金屬在生物炭表面的競爭吸附趨勢和吸附機制。而本研究總共合成出五種生物炭,分別為:稻殼生物炭300℃&600℃(RB300&RB600)、落葉生物炭300℃&600℃(LB300&LB600)以及鐵改質稻殼生物炭300℃(Fe-RB300)。首先經由水相吸附實驗結果發現,與高溫合成的生物炭(RB600、LB600)相比,反而是低溫合成的生物炭(RB300、LB300)對於鎘、銅、鋅有著更好的吸附能力,並且又以LB300對於此三種重金屬的吸附能力最佳。至於經鐵改質過的Fe-RB300對於鎘、銅、鋅的吸附效果反而比RB300還差。另外,由競爭等溫吸附實驗結果可觀察出絕大多數的生物炭對個別重金屬的吸附容量大小順序為:銅>鎘>鋅;但唯獨只有LB300對個別重金屬的吸附容量大小順序為:鎘>銅>鋅。接下來從土壤培養試驗之結果中發現,施用過不同生物炭的所有組別與控制組相比,其土壤孔隙水中鎘、銅、鋅的濃度皆有所下降,其中又以LB300對銅具有最好的穩定效果,並且以LB600對鎘、鋅的穩定效果最佳。至於經鐵改質過的Fe-RB300對於個別重金屬的穩定效果依然比RB300還差。最後,關於使用線性模型對土壤孔隙水中重金屬濃度的預測結果,可以發現鎘、銅、鋅於大部分組別之預測濃度值與實際濃度值相比還是有落差的,推測可能與等溫吸附實驗最初決定的重金屬濃度範圍不夠低以及土壤孔隙水中溶解性有機質(DOM)的介入有關,使得預測結果低估了各種生物炭對於個別重金屬的穩定效果。不過,在RB300、LB300組別中還是可發現,隨著重金屬的競爭數量增加,鎘的預測濃度值有更加貼近實際濃度值的趨勢,而這也進一步說明了還是有需將多重重金屬競爭吸附的因素納入考量之必要性。
摘要(英) The harmful by-products produced by urban industrialization and economic industries need to be treated properly. However, cases of industrial heavy metal wastewater arbitrarily discharged into natural waters without careful treatment have often occurred in recent years, and this is the main reason that irrigated fields are polluted by heavy metals. Regarding the strategies for remediation of heavy metal pollution in the agricultural field, scientists have mainly studied the use of eco-friendly and low-cost soil amendments (such as biochar) for in situ stabilize heavy metals in paddy soils in recent years, and many soil amendments have been developed. Therefore, it is necessary to consider how to pre-select the appropriate soil amendments for soil remediation on a site-specific basis. In view of this, this study will use the linear model maked based on the idea of isotherm adsorption as mentioned in the relevant literature to estimate the adsorption potential of cadmium, copper, and zinc for biochars in paddy soils. The soil incubation experiment was used to observe the actual concentration changes of heavy metals in pore waters after applying different biochars. Furthermore, we will also examine the competitive effect of co-existing other heavy metals on the adsorptive interaction between synthetic BC and the target metal, and discuss adsorption mechanism as well. Five biochars were used in this study. Biochars produced from rice husk and camphor tree leaf pyrolysed at either 300 or 600 °C (RB300, RB600, LB300 and LB600, respectively). The Fe-modified biochar was produced by immersing the rice husk into a FeCl3∙6H2O solution, and then pyrolyzed at 300 °C (Fe-RB300). In the batch adsorption experiment, higher adsorption capacity of biochars synthesized at low temperature (RB300, LB300) for Cd(II), Cu(II) and Zn(II), compared to biochars synthesized at high temperature (RB600, LB600). LB300 showed a optimal adsorption capacity for these three heavy metals. As for the Fe-RB300, worse adsorption capacity for Cd(II), Cu(II) and Zn(II) compared to RB300. In addition, the adsorption capacity of most biochars toward heavy metals were in the order of Cu(II)>Cd(II)>Zn(II) for the multi-metal adsorption isotherm, whereas LB300 had the order of Cd(II)>Cu(II)>Zn(II). In the soil incubation experiment, concentrations of Cd(II), Cu(II) and Zn(II) in pore waters after different biochar treatments were all significantly lower than those in the control: LB300 was most effective for stabilizing Cu(II); LB600 was most effective for stabilizing Cd(II) and Zn(II); Biochar impregnated with iron oxides (Fe-RB300) had no apparent immobilization effect on heavy metals in comparison with the original biochar (RB300). Regarding the prediction results of heavy metal concentrations in pore waters using the linear model, most of the results showed that the linear model did not give reliable predictions in the reduction of Cd(II), Cu(II), and Zn(II) concentrations in pore waters, which might be due to the negligence of the dissolved organic matter (DOM) effect, or/and the lack of sufficiently low concentrations of heavy metals used in the aqueous adsorption experiments. Nonetheless, the modeled value was indeed closer to the observed value under RB300 and LB300 treatments when the metal competitive effect was taken into account for pore water Cd(II), and it still means that it is necessary to take the metal competitive effect into consideration.
關鍵字(中) ★ 生物炭
★ 重金屬
★ 競爭吸附
★ 土壤孔隙水
★ 線性模型
★ 稻田土壤復育
關鍵字(英) ★ Biochar
★ Heavy metal
★ Competitive adsorption
★ Pore water
★ Linear model
★ Paddy soil remediation
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 ix
表目錄 xiii
第一章 前言 1
1.1 研究緣起與背景 1
1.1.1 土壤重金屬污染來源 1
1.1.2 稻田重金屬污染衍生之食安問題 1
1.1.3 農地重金屬污染整治技術之發展趨勢 2
1.1.4 提升生物炭對於重金屬吸附效果之方法 3
1.1.5 決定生物炭特性之主要因素 3
1.1.6 生物炭對於重金屬之吸附機制 3
1.1.7 生物炭復育受重金屬污染農地面臨的問題 4
1.1.8 模型預估生物炭復育受重金屬污染稻田之潛力 5
1.2 研究目的 7
第二章 研究方法與材料 8
2.1 研究流程與架構 8
2.2 實驗材料與藥品 9
2.2.1 土壤採集 9
2.2.2 實驗藥品 9
2.3 常規與鐵改質生物炭的合成方法 11
2.4 生物炭的特性分析 12
2.4.1 近似分析( Proximate analysis) 12
2.4.2 元素分析(Elemental analysis) 12
2.4.3 pH 12
2.4.4 界達電位分析(Zeta potential) 13
2.4.5 比表面積及孔徑分布分析 13
2.4.6 掃描式電子顯微鏡- X射線能譜儀分析(SEM-EDS) 13
2.4.7 傅立葉轉換紅外線光譜儀分析(FTIR) 14
2.4.8 X射線粉末繞射儀分析(XRD) 14
2.4.9 X射線光電子能譜儀分析(XPS) 14
2.4.10 Boehm滴定分析(Boehm Titration) 14
2.5 水相吸附實驗 17
2.5.1 動力學吸附實驗 17
2.5.2 等溫吸附實驗 18
2.6 預估土壤孔隙水中重金屬濃度變化之模型運算 20
2.7 土壤培養試驗 21
2.8 化學分析 22
2.8.1 水相吸附實驗之重金屬(鎘、銅、鋅)濃度定量分析 22
2.8.2 土壤有機質分析(NIEA R212.02C) 22
2.8.3 土壤重金屬總量分析(王水消化法)(NIEA S321.65B) 22
2.8.4 土壤孔隙水之重金屬濃度定量分析 23
2.8.5 土壤孔隙水之重金屬(鎘、銅、鋅)添加樣品分析 23
第三章 結果與討論 24
3.1 土壤及土壤孔隙水之基本特性分析 24
3.2 生物炭之特性分析 26
3.3 水相吸附研究結果 45
3.3.1 動力學吸附研究 45
3.3.2 等溫吸附研究 50
3.3.2.1 單一金屬之等溫吸附研究 50
3.3.2.2 雙重金屬之競爭等溫吸附研究 55
3.3.2.3 三重金屬之競爭等溫吸附研究 61
3.3.2.4 多重重金屬競爭吸附趨勢研究 64
3.4 生物炭對於重金屬(鎘、銅、鋅)之吸附機制探討 67
3.5 生物炭對於污染土壤重金屬(鎘、銅、鋅)的穩定性影響 75
3.5.1 土壤培養試驗結果 75
3.5.2 線性模型預估土壤孔隙水中重金屬濃度變化之結果 77
第四章 結論與建議 81
4.1 結論 81
4.2 建議 83
參考文獻 84
附錄 95
參考文獻 1. Gomez-Eyles, J.; Beesley, L.; Moreno-Jiménez, E.; Ghosh, U.; Sizmur, T., The potential of biochar amendments to remediate contaminated soils. In 2013; pp 100-133.
2. Paz-Ferreiro, J.; Lu, H.; Fu, S.; Méndez, A.; Gascó, G., Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth 2014, 5, (1), 65-75.
3. Norini, M. P.; Thouin, H.; Miard, F.; Battaglia-Brunet, F.; Gautret, P.; Guegan, R.; Le Forestier, L.; Morabito, D.; Bourgerie, S.; Motelica-Heino, M., Mobility of Pb, Zn, Ba, As and Cd toward soil pore water and plants (willow and ryegrass) from a mine soil amended with biochar. J. Environ. Manage. 2019, 232, 117-130.
4. Egene, C. E.; Van Poucke, R.; Ok, Y. S.; Meers, E.; Tack, F. M. G., Impact of organic amendments (biochar, compost and peat) on Cd and Zn mobility and solubility in contaminated soil of the Campine region after three years. Sci. Total Environ. 2018, 626, 195-202.
5. Bolan, S.; Kunhikrishnan, A.; Seshadri, B.; Choppala, G.; Naidu, R.; Bolan, N. S.; Ok, Y. S.; Zhang, M.; Li, C. G.; Li, F.; Noller, B.; Kirkham, M. B., Sources, distribution, bioavailability, toxicity, and risk assessment of heavy metal(loid)s in complementary medicines. Environ. Int. 2017, 108, 103-118.
6. Cay, S.; Uyanik, A.; Ozasik, A., Single and binary component adsorption of copper(II) and cadmium(II) from aqueous solutions using tea-industry waste. Sep. Purif. Technol. 2004, 38, (3), 273-280.
7. Yin, D.; Wang, X.; Peng, B.; Tan, C.; Ma, L. Q., Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system. Chemosphere 2017, 186, 928-937.
8. 張淑貞 6公頃40多筆農地重金屬超標 環保署報告:灌排未分離惹禍. https://e-info.org.tw/node/215643
9. Liu, Y.; Huang, J.; Xu, H.; Zhang, Y.; Hu, T.; Chen, W.; Hu, H.; Wu, J.; Li, Y.; Jiang, G., A magnetic macro-porous biochar sphere as vehicle for the activation and removal of heavy metals from contaminated agricultural soil. Chem. Eng. J. 2020, 390.
10. Tan, Z.; Wang, Y.; Kasiulienė, A.; Huang, C.; Ai, P., Cadmium removal potential by rice straw-derived magnetic biochar. Clean Technol. Environ. Policy 2016, 19, (3), 761-774.
11. Wan, X.; Li, C.; Parikh, S. J., Simultaneous removal of arsenic, cadmium, and lead from soil by iron-modified magnetic biochar. Environ. Pollut. 2020, 261, 114157.
12. Park, J. H.; Lamb, D.; Paneerselvam, P.; Choppala, G.; Bolan, N.; Chung, J. W., Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J. Hazard. Mater. 2011, 185, (2-3), 549-574.
13. Lien, K. W.; Pan, M. H.; Ling, M. P., Levels of heavy metal cadmium in rice (Oryza sativa L.) produced in Taiwan and probabilistic risk assessment for the Taiwanese population. Environ. Sci. Pollut. Res. 2021, 28, (22), 28381-28390.
14. Rothenberg, S. E.; Feng, X. B., Mercury cycling in a flooded rice paddy. J. Geophys. Res-Biogeo. 2012, 117, (3), 1-16.
15. Li, H. H.; Liu, Y. T.; Chen, Y. H.; Wang, S. L.; Wang, M. K.; Xie, T. H.; Wang, G., Biochar amendment immobilizes lead in rice paddy soils and reduces its phytoavailability. Sci. Rep. 2016, 6, 31616.
16. Yang, X.; Pan, H.; Shaheen, S. M.; Wang, H.; Rinklebe, J., Immobilization of cadmium and lead using phosphorus-rich animal-derived and iron-modified plant-derived biochars under dynamic redox conditions in a paddy soil. Environ. Int. 2021, 156, 106628.
17. Kim, S. W.; Chae, Y.; Moon, J.; Kim, D.; Cui, R.; An, G.; Jeong, S. W.; An, Y. J., In Situ Evaluation of Crop Productivity and Bioaccumulation of Heavy Metals in Paddy Soils after Remediation of Metal-Contaminated Soils. J. Agric. Food. Chem. 2017, 65, (6), 1239-1246.
18. Khan, S.; Chao, C.; Waqas, M.; Arp, H. P. H.; Zhu, Y.-G., Sewage Sludge Biochar Influence upon Rice (Oryza sativa L) Yield, Metal Bioaccumulation and Greenhouse Gas Emissions from Acidic Paddy Soil. Environ. Sci. Technol. 2013, 47, (15), 8624-8632.
19. Houben, D.; Evrard, L.; Sonnet, P., Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 2013, 92, (11), 1450-1457.
20. Yuan, P.; Wang, J.; Pan, Y.; Shen, B.; Wu, C., Review of biochar for the management of contaminated soil: Preparation, application and prospect. Sci. Total. Environ. 2019, 659, 473-490.
21. Wang, Y.; Liu, Y.; Zhan, W.; Zheng, K.; Wang, J.; Zhang, C.; Chen, R., Stabilization of heavy metal-contaminated soils by biochar: Challenges and recommendations. Sci. Total. Environ. 2020, 729, 139060.
22. Chen, Q.; Dong, J.; Yi, Q.; Liu, X.; Zhang, J.; Zeng, Z., Proper Mode of Using Rice Straw Biochar To Treat Cd-Contaminated Irrigation Water in Mining Regions Based on a Multiyear in Situ Experiment. ACS Sustainable Chem. Eng. 2019, 7, (11), 9928-9936.
23. Jiang, J.; Xu, R. K.; Jiang, T. Y.; Li, Z., Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J. Hazard. Mater. 2012, 229-230, 145-150.
24. Yang, X.; Wan, Y.; Zheng, Y.; He, F.; Yu, Z.; Huang, J.; Wang, H.; Ok, Y. S.; Jiang, Y.; Gao, B., Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chem. Eng. J. 2019, 366, 608-621.
25. Park, J. H.; Ok, Y. S.; Kim, S. H.; Cho, J. S.; Heo, J. S.; Delaune, R. D.; Seo, D. C., Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere 2016, 142, 77-83.
26. Chen, X.; Chen, G.; Chen, L.; Chen, Y.; Lehmann, J.; McBride, M. B.; Hay, A. G., Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour. Technol. 2011, 102, (19), 8877-8884.
27. Ahmad, M.; Lee, S. S.; Rajapaksha, A. U.; Vithanage, M.; Zhang, M.; Cho, J. S.; Lee, S. E.; Ok, Y. S., Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. Bioresour. Technol. 2013, 143, 615-622.
28. Gomez-Eyles, J. L.; Yupanqui, C.; Beckingham, B.; Riedel, G.; Gilmour, C.; Ghosh, U., Evaluation of biochars and activated carbons for in situ remediation of sediments impacted with organics, mercury, and methylmercury. Environ. Sci. Technol. 2013, 47, (23), 13721-13729.
29. Beesley, L.; Marmiroli, M., The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ. Pollut. 2011, 159, (2), 474-480.
30. 行政院農業委員會畜產試驗所 產品點廢變黃金、技術輸出潛力強 晉身亞太區循環農業領頭羊. https://www.coa.gov.tw/theme_data.php?theme=news&sub_theme=agri&id=8246
31. 王秀亭 稻穀生物炭 改善土壤、少病蟲害. https://news.ltn.com.tw/news/local/paper/1257229
32. Li, H.; Dong, X.; da Silva, E. B.; de Oliveira, L. M.; Chen, Y.; Ma, L. Q., Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 2017, 178, 466-478.
33. Wu, J.; Huang, D.; Liu, X.; Meng, J.; Tang, C.; Xu, J., Remediation of As(III) and Cd(II) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar. J. Hazard. Mater. 2018, 348, 10-19.
34. Han, Y.; Cao, X.; Ouyang, X.; Sohi, S. P.; Chen, J., Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr (VI) from aqueous solution: Effects of production conditions and particle size. Chemosphere 2016, 145, 336-341.
35. Xiao, X.; Chen, B.; Chen, Z.; Zhu, L.; Schnoor, J. L., Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review. Environ. Sci. Technol. 2018, 52, (9), 5027-5047.
36. Ahmad, M.; Rajapaksha, A. U.; Lim, J. E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S. S.; Ok, Y. S., Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 2014, 99, 19-33.
37. Keiluweit, M.; Kleber, M., Molecular-Level Interactions in Soils and Sediments: The Role of Aromatic π-Systems. Environ. Sci. Technol. 2009, 43, (10), 3421-3429.
38. Jian, X.; Li, S.; Feng, Y.; Chen, X.; Kuang, R.; Li, B.; Sun, Y., Influence of Synthesis Methods on the High-Efficiency Removal of Cr(VI) from Aqueous Solution by Fe-Modified Magnetic Biochars. ACS Omega 2020, 5, (48), 31234-31243.
39. Beesley, L.; Dickinson, N., Carbon and trace element fluxes in the pore water of an urban soil following greenwaste compost, woody and biochar amendments, inoculated with the earthworm Lumbricus terrestris. Soil Biol. Biochem. 2011, 43, (1), 188-196.
40. Gomez-Eyles, J. L.; Sizmur T Fau - Collins, C. D.; Collins Cd Fau - Hodson, M. E.; Hodson, M. E., Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements. Environ. Pollut. 2011, 159, (2), 616-622.
41. 黃氏美惠; Hue, H. T. M. 農業廢棄物所合成的碳屬吸附劑在污染水稻土中固定鎘之應用;Application of carbonaceous adsorbents derived from agricultural wastes in immobilization of cadmium in contaminated paddy soil. 國立中央大學, 2019.
42. Keiluweit, M.; Nico, P. S.; Johnson, M. G.; Kleber, M., Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environ. Sci. Technol. 2010, 44, (4), 1247-1253.
43. Igalavithana, A. D.; Mandal, S.; Niazi, N. K.; Vithanage, M.; Parikh, S. J.; Mukome, F. N. D.; Rizwan, M.; Oleszczuk, P.; Al-Wabel, M.; Bolan, N.; Tsang, D. C. W.; Kim, K.-H.; Ok, Y. S., Advances and future directions of biochar characterization methods and applications. Crit. Rev. Environ. Sci. Technol. 2018, 47, (23), 2275-2330.
44. Inyang, M.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A. R.; Pullammanappallil, P.; Cao, X., Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour. Technol. 2012, 110, 50-56.
45. Singh, B.; Mm, D.; Shen, Q.; Camps Arbestain, M., Chapter 3. Biochar pH, electrical conductivity and liming potential. In 2017; pp 23-38.
46. Zhang, H.; Xu, F.; Xue, J.; Chen, S.; Wang, J.; Yang, Y., Enhanced removal of heavy metal ions from aqueous solution using manganese dioxide-loaded biochar: Behavior and mechanism. Sci. Rep. 2020, 10, (1), 6067.
47. Yuan, J. H.; Xu, R. K.; Zhang, H., The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 2011, 102, (3), 3488-3497.
48. Goertzen, S. L.; Thériault, K. D.; Oickle, A. M.; Tarasuk, A. C.; Andreas, H. A., Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon 2010, 48, (4), 1252-1261.
49. Abdallah, M. M.; Ahmad, M. N.; Walker, G.; Leahy, J. J.; Kwapinski, W., Batch and Continuous Systems for Zn, Cu, and Pb Metal Ions Adsorption on Spent Mushroom Compost Biochar. Ind. Eng. Chem. Res. 2019, 58, (17), 7296-7307.
50. Pal, D.; Maiti, S. K., Abatement of cadmium (Cd) contamination in sediment using tea waste biochar through meso-microcosm study. J. Cleaner Prod. 2019, 212, 986-996.
51. Aksu, Z.; Açıkel, Ü.; Kabasakal, E.; Tezer, S., Equilibrium modelling of individual and simultaneous biosorption of chromium(VI) and nickel(II) onto dried activated sludge. Water Res. 2002, 36, (12), 3063-3073.
52. Oladipo, A. A.; Gazi, M., Microwaves initiated synthesis of activated carbon-based composite hydrogel for simultaneous removal of copper(II) ions and direct red 80 dye: A multi-component adsorption system. J. Taiwan Inst. Chem. Eng. 2015, 47, 125-136.
53. Pintor, A. M. A.; Brandao, C. C.; Boaventura, R. A. R.; Botelho, C. M. S., Multicomponent adsorption of pentavalent As, Sb and P onto iron-coated cork granulates. J. Hazard. Mater. 2021, 406, 124339.
54. Ramos, S. N. d. C.; Xavier, A. L. P.; Teodoro, F. S.; Gil, L. F.; Gurgel, L. V. A., Removal of cobalt(II), copper(II), and nickel(II) ions from aqueous solutions using phthalate-functionalized sugarcane bagasse: Mono- and multicomponent adsorption in batch mode. Ind. Crops Prod. 2016, 79, 116-130.
55. Yadav, A.; Bagotia, N.; Sharma, A. K.; Kumar, S., Simultaneous adsorptive removal of conventional and emerging contaminants in multi-component systems for wastewater remediation: A critical review. Sci. Total. Environ. 2021, 799, 149500.
56. 陳欣妤; Chen, H.-Y. 零價鐵與硫酸鹽的添加對於水田根圈環境汞 之生物有效性與菌相組成的影響;Influence of zero-valent iron and sulfate amendments on mercury bioavailability and indigenous bacterial community composition in the paddy rhizosphere. 國立中央大學, 2019.
57. Donohue, M. D.; Aranovich, G. L., Classification of Gibbs adsorption isotherms. Adv. Colloid Interface Sci. 1998, 76-77, 137-152.
58. Wang, W.; Liu, P.; Zhang, M.; Hu, J.; Xing, F., The Pore Structure of Phosphoaluminate Cement. Open J. Compos. Mater. 2012, 02, (03), 104-112.
59. Okamura, M.; Takagaki, A.; Toda, M.; Kondo, J. N.; Domen, K.; Tatsumi, T.; Hara, M.; Hayashi, S., Acid-Catalyzed Reactions on Flexible Polycyclic Aromatic Carbon in Amorphous Carbon. Chem. Mater. 2006, 18, (13), 3039-3045.
60. Xu, X.; Cao, X.; Zhao, L., Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: role of mineral components in biochars. Chemosphere 2013, 92, (8), 955-961.
61. Xiao, X.; Chen, B.; Zhu, L., Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures. Environ. Sci. Technol. 2014, 48, (6), 3411-3419.
62. Feng, Y.; Liu, P.; Wang, Y.; Finfrock, Y. Z.; Xie, X.; Su, C.; Liu, N.; Yang, Y.; Xu, Y., Distribution and speciation of iron in Fe-modified biochars and its application in removal of As(V), As(III), Cr(VI), and Hg(II): An X-ray absorption study. J. Hazard. Mater. 2020, 384, 121342.
63. Liu, Y.; Wang, L.; Wang, X.; Jing, F.; Chang, R.; Chen, J., Oxidative ageing of biochar and hydrochar alleviating competitive sorption of Cd(II) and Cu(II). Sci. Total. Environ. 2020, 725, 138419.
64. Fang, Q.; Chen, B.; Lin, Y.; Guan, Y., Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups. Environ. Sci. Technol. 2014, 48, (1), 279-288.
65. Sajjadi, B.; Chen, W.-Y.; Egiebor, N. O., A comprehensive review on physical activation of biochar for energy and environmental applications. Rev. Chem. Eng. 2019, 35, (6), 735-776.
66. Liu, J.; Cheng, W.; Yang, X.; Bao, Y., Modification of biochar with silicon by one-step sintering and understanding of adsorption mechanism on copper ions. Sci. Total. Environ. 2020, 704, 135252.
67. Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S., Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, (12), 1564-1574.
68. Moulder, J. F.; Chastain, J., Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Physical Electronics Division, Perkin-Elmer Corporation: 1992.
69. Thermo Scientific Avantage Data System for XPS. . https://www.thermofisher.com/tw/zt/home/materials-science/learning-center/periodic-table.html#em-contact-form
70. Khan, Z. H.; Gao, M.; Qiu, W.; Islam, M. S.; Song, Z., Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution. Chemosphere 2020, 246, 125701.
71. Liu, Z.; Zhang, F.-S.; Sasai, R., Arsenate removal from water using Fe3O4-loaded activated carbon prepared from waste biomass. Chem. Eng. J. 2010, 160, (1), 57-62.
72. Zhou, Q.; Liao, B.; Lin, L.; Qiu, W.; Song, Z., Adsorption of Cu(II) and Cd(II) from aqueous solutions by ferromanganese binary oxide-biochar composites. Sci. Total. Environ. 2018, 615, 115-122.
73. Gutierrez, M.; Fuentes, H. R., Modeling adsorption in multicomponent systems using a Freundlich-type isotherm. J. Contam. Hydrol. 1993, 14, (3), 247-260.
74. Standard Reduction Potentials, Boundless Chemistry. https://courses.lumenlearning.com/boundless-chemistry/chapter/standard-reduction-potentials/
75. Kołodyńska, D.; Wnętrzak, R.; Leahy, J. J.; Hayes, M. H. B.; Kwapiński, W.; Hubicki, Z., Kinetic and adsorptive characterization of biochar in metal ions removal. Chem. Eng. J. 2012, 197, 295-305.
76. McKay, G.; Porter, J. F., Equilibrium Parameters for the Sorption of Copper, Cadmium and Zinc Ions onto Peat. J. Chem. Technol. Biotechnol. 1997, 69, (3), 309-320.
77. Thangasamy, P.; Shanmuganathan, S.; Subramanian, V., A NiCo-MOF nanosheet array based electrocatalyst for the oxygen evolution reaction. Nanoscale Adv. 2020, 2, (5), 2073-2079.
78. Dev, V. V.; Baburaj, G.; Antony, S.; Arun, V.; Krishnan, K. A., Zwitterion-chitosan bed for the simultaneous immobilization of Zn(II), Cd(II), Pb(II) and Cu(II) from multi-metal aqueous systems. J. Cleaner Prod. 2020, 255.
79. Zhang, R.; Xie, J.; Wang, C.; Liu, J.; Zheng, X.; Li, Y.; Yang, X.; Wang, H.-E.; Su, B.-L., Macroporous ZnO/ZnS/CdS composite spheres as efficient and stable photocatalysts for solar-driven hydrogen generation. J. Mater. Sci. 2017, 52, (19), 11124-11134.
80. Zhou, N.; Wang, Y.; Yao, D.; Li, S.; Tang, J.; Shen, D.; Zhu, X.; Huang, L.; Zhong, M.-e.; Zhou, Z., Novel wet pyrolysis providing simultaneous conversion and activation to produce surface-functionalized biochars for cadmium remediation. J. Cleaner Prod. 2019, 221, 63-72.
81. Kosmulski, M.; Maczka, E.; Jartych, E.; Rosenholm, J. B., Synthesis and characterization of goethite and goethite–hematite composite: experimental study and literature survey. Adv. Colloid Interface Sci. 2003, 103, (1), 57-76.
82. Xiao, R.; Wang, P.; Mi, S.; Ali, A.; Liu, X.; Li, Y.; Guan, W.; Li, R.; Zhang, Z., Effects of crop straw and its derived biochar on the mobility and bioavailability in Cd and Zn in two smelter-contaminated alkaline soils. Ecotoxicol. Environ. Saf. 2019, 181, 155-163.
指導教授 林居慶(Chu-Ching Lin) 審核日期 2021-10-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明