參考文獻 |
[1] J. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, New York: Plenum, 1981.
[2] E. Bonabeau, M. Dorigo, and G. Theraulaz, “Inspiration for optimization form social insect behaviour,” Nature, vol. 406, 6 July 2000.
[3] E. Bonabeau, M. Dorigo and G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems, Oxford University Press, New York. 1999.
[4] P. Cheeseman and J. Stutz, “Bayesian classification (autoclass): theory and results,” in Proceedings of Advances in Knowledge Discovery and Data Mining, 1996.
[5] G. A. Carpenter and S. Grossberg, “A massively parallel architecture for a self-organizing neural pattern recognition machine,” Computer Vision, Graphics, and Image Proc, vol. 37, pp. 54-115, 1987.
[6] G. A. Carpenter and S. Grossberg, “ART2: self-organizing of stable category recognition codes for analog input pattern,” Appl. Optics, vol. 26, no. 23, pp. 4919-4930, Dec. 1987.
[7] G. A. Carpenter, S. Grossberg, and D. B. Rosen, “Fuzzy ART: Fast Stable Learning and Categorization of Analog Patterns by an Adaptive Resonance System,” Neural Networks, vol. 4, pp. 759-771, 1991.
[8] G. A. Carpenter, S. Grossberg, and J. H. Reynolds, “ARPMAP: supervised real-time learning and classification of nonstationary Data by a self-organizing neural networks,” Neural Networks, vol. 4, pp. 565-558, 1991.
[9] A. Colorni, M. Dorigo, and V. Maniezzo, “An investigation of some properties of an ant algorithm,” Proceedings of the Parallel Problem Solving From Nature, vol. 2, pp.509-520, 1992.
[10] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis, New York: Wiley, 1973.
[11] D. L. Davies and D. W. Bouldin, “A cluster separation measure,” IEEE Trans. on Pattern Anal. Machine Intell, vol. PAMI-1, pp. 224-227, 1979.
[12] D. L. Davies and D. W. Bouldin, “A cluster separation measure,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 1, no. 4, pp. 224-227, 1979.
[13] M. Dorigo, E. Bonabeau, and G. Theralulaz, “Ant algorithm and stigmergy,” Future Generation Computer Systems, vol-16, pp. 851-871, 2000.
[14] J. L. Denebourg, S. Goss, N. Frankes, A. SendovaFranks, C. Detrain and L. Chretien, “The dynamic of collective sorting robot-like ants and ant-like robots,” in J. A. Meyer and S. W. Wilson (Eds.), Procs. of SAB’90 – 1st Conf. on Simulation of Adaptive Behavior:Form Animal to Animates, Cambridge, MA:MIT Press, pp.356-365, 1991.
[15] J. Han and M. Kamber, Data mining: Concepts and Techniques, Morgan Kaufmann, 2000.
[16] F. Heppner and U. Grenander, “A stochastic nonlinear model for coordinated bird flocks,” in S. Krasner, Ed., The Ubiquity of Chaos. AAAS Publications, Washington, DC, 1990.
[17] A. K. Jain and R. C. Dubes, Algorithm for Clustering Data, Prentic Hall, New Jersey, 1988.
[18] T. Kohonen, S. Kaski, K. Lagus, and T. Honkela, “Very large two-level SOM for the browsing of newsgroups,” in Proceedings of ICANN96, International Conference on Artificial Neural Networks, 1996.
[19] T. Kohonen, “Self-organized formation of topologically correct feature maps,” Biological Cybernetics, vol. 43, pp. 59-69, 1982.
[20] B. Kleiner, and J. A. Hartigan. “Representing points in many dimensions by trees and castles.” Journal of the American Statistical Association, vol. 76, pp. 260-269, 1981.
[21] M. A. Kraaijveld, J. Mao, and A. K. Jain, “A nonlinear projection method based on Kohonen’s topology preserving maps,” IEEE Trans. on Neural Network, vol. 6, pp. 548-559, 1995.
[22] M. A. Kraaijveld, J. Mao, and A. K. Jain, “A non-linear projection method based on Kohonen’s topology preserving maps,” Proc. 11th Int’l. Conference on Pattern Recognition, The Hague, pp. 41-45, August 1992.M. Dorigo, E. Bonabeau, G. Theralulaz, “Ant algorithm and stigmergy,” Future Generation Computer Systems, vol-16, pp. 851-871, 2000.
[23] E. D. Lumer and B.Faieta, “Diversity and adaptation in population of cluster ants,” in D. Cliff, P. Husbands, J. Meyer, and S. Wilson (Eds.), Procs. of SAB’64-3rd Conf. on Simulation of Adaptive Behavior:Form Animal to Animates, Cambridge, MA:The MIT Press/Bradford Books, 1994.
[24] C. W. Reynolds, “Flocks, herds and schools: a distributed behavioral model”, Computer Graphics, vol. 21, no. 4, pp.25-34, 1987.
[25] M. C. Su and H. T. Chang, “A new model of self-organizing neural networks and its application in data projection,” IEEE Trans. on Neural Networks, vol. 12, no. 1, pp. 153-158, 2000.
[26] J. W. Sammon, “A nonlinear mapping for data structure analysis,” IEEE Trans. on Comput., C-18, pp. 401-409, 1969.
[27] T. Stutzle and H. Hoos, “MAX-MIN ant system,” Future Generation Computer Systems, vol-16, pp. 889-914, 2000.
[28] M. C. Su and H. T. Chang, “Fast self-organizing feature map algorithm,” IEEE Trans. on Neural Networks, vol. 11, no. 3, pp. 721-733, 2000.
[29] J. T. Tou and R. C. Gonzalez, Pattern Recognition Principles, Addison-Wesley, 1974.
[30] A. Ultsch, “Self-organizing neural networks for visualization and classification,” Inform. Classification, pp. 864-869, 1993.
[31] H. Yin, “ViSOM-a novel method for multivariate data projection and structure visualization,” IEEE Trans. on Neural Networks, vol. 13, no. 1, pp. 237-243, 2002.
[32] H. Yin, “Data visualization and manifold mapping using the ViSOM,” Neural Networks, vol. 15, no. 8-9, pp. 1005-1016, 2002.
[33] I. K. Yu, C. S. Chou, and Y. H. Song, “Application of the ant colony search algorithm m to short-term generation scheduling problem of thermal units,” International Conference on Power System Technology, vol. 1, pp.552-556, 1998. |