博碩士論文 108323604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.147.104.248
姓名 謝帥(Semichastnov Aleksandr)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 伺服衝床中齒輪傳動系統之動力模型建立與分析
(Dynamic Modeling and Analysis of Gear Transmission System in a Servo Press)
相關論文
★ 應用調諧顆粒阻尼器於迴轉式壓縮機振動抑制之研究★ 應用離散元素法與多體動力學於齒輪傳動系統動力分析模型之建立
★ 不同氣體負載下雙螺桿壓縮機動力響應及振動頻譜特徵之預測★ 新型魯氏真空泵轉子齒形之參數化設計及性能評估
★ 以CNC內珩齒機進行螺旋齒輪齒面拓樸修整之研究★ 雙螺桿壓縮機變導程轉子齒間法向間隙之數值計算方法及其三維幾何模型驗證
★ 不同工作條件下冷媒雙螺桿壓縮機之轉子受力分析及動載響應預測★ 應用多體動力學及離散元素法於具阻尼顆粒齒輪及軸承系統抑振之研究
★ 具齒廓修形內嚙合非圓形齒輪創成之方法建立與其傳動誤差分析★ 雙螺桿壓縮機於CFD仿真模擬之三維幾何簡化方法建立
★ 航空發動機齒輪箱傳動系統之強度分析與改善★ 電動車差速齒輪傳動系統之動載分析與性能評估
★ 指狀銑刀安裝偏差對真空泵螺桿轉子加工精度影響之研究★ 以CNC內珩齒機加工具鼓形之錐狀齒輪之研究
★ 應用阻尼顆粒於旋轉機械之振動抑制及動平衡設計★ 考量氣體負載下迴轉式壓縮機動態負載分析模型之建立
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-30以後開放)
摘要(中) 伺服壓力機運行時,主要以齒輪傳動為主,然而在衝壓過程中,對齒輪的衝擊損傷頗大。錯誤的齒輪中心距、不同步、軸承磨損或軸未對準可能會導致振動、產生傳動噪音或使齒輪壽命縮短。因此,為了生產高品質及高性能的衝壓設備,應該以提高齒輪精度、強度和壽命為目標。為此,在機械設計軟體KISSsys的基礎上,建構了伺服衝床之齒輪傳動系統分析模型。該軟體對伺服壓力機齒輪傳動系統中的齒輪強度和傳動誤差進行了分析。透過輪齒修整可降低齒輪強度和傳動誤差,進而減少齒輪箱的振動。此外,多體動力學軟體ADAMS還進行了伺服壓力機齒輪傳動系統的動力學分析,研究了碰撞及滑動接觸對齒輪副接觸力的影響,分析了齒輪對接觸力在衝壓過程中死點處的應力結果。此外,導出驅動軸的緊急鎖定力並提供鎖定力曲線。最後,通過偏置距的修正,在輸入功率不變及指定衝頭平移速度下,以模擬證實提高了衝床的工作效率。
摘要(英) During servo press operation, gear transmission serves as the main drive, however, during the pressing process, the impact significantly damages the gears. Incorrect gear center distance, asynchrony, bearing wear or misalignment of shaft may lead to vibration, and transmission noise or short gear life. As a result, the goal is to improve gear accuracy, strength and longevity, to produce high-quality and high-performance pressing machines. To this end, a servo press gear drive system is constructed, based on the gear design software KISSsys. According to this software, gear strength and transmission error in the servo press gear transmission system are analyzed. Subsequently, gear strength and transmission error are reduced through the gear modification. This in turn leads to reduction of the gearbox vibration. In addition, the dynamic analysis of the servo press gear transmission system is provided by multibody dynamics software ADAMS. The influence of the collision slider and pattern on gear pairs contact forces are investigated. The stress behavior of the gear pairs is analyzed at the lowest dead point of pressing process. Furthermore, an emergency locking force for the drive shaft is derived and the locking force curve is provided. Finally, machine efficiency is improved with constant energy consumption and with a specified required slider translational speed, by the offset of slider modification.
關鍵字(中) ★ 伺服沖床
★ 齒輪傳動
★ 多體動力學
★ 動態分析
★ KISSsys
★ ADAMS
關鍵字(英) ★ servo press
★ gear drive system
★ multi-body dynamics
★ dynamic analysis
★ KISSsys
★ ADAMS
論文目次 摘要 II
Abstract III
Acknowledgments IV
Contents V
List of figures VIII
List of tables X
1. Introduction 1
1-1 Research Background 1
1-2 Literature Review 2
1-3 Motivations and Goals 4
1.4 Thesis Structure 5
2. Establishment of Gear Transmission System in KISSsys 7
2-1 Process for Establishing KISSsys Model 8
2-2 Mechanical Transmission System Settings in KISSsys 10
2-2-1 Power Flow of Gear Transmission System 10
2-2-2 Geometry Settings of Spur Gears 11
2-2-3 Application of ANSYS for Offset Analysis of Bearings in KISSsys 13
2-2-4 Belt Transmission Settings 14
2-2-5 Lubrication and Constructed Material Parameters 15
2-2-6 Crankshaft, Crank and Slider Settings in KISSsys 16
3. Establishment of Gear Transmission System in ADAMS 18
3-1 Process for Establishing ADAMS Model 18
3-2 Mechanical Transmission System Settings in ADAMS 21
3-2-1 Assumption and Settings of Sliding Bearings 21
3-2-2 Gear Pairs Contact Forces 27
3-3 Model Includes Slider 29
4. Analysis of KISSsys Model with Improvements 34
4-1 Working Conditions of MTS in KISSsys 35
4-2 Root and Flank Safety Factors of MTS 36
4-3 Stress Distribution and Transmission Error of Gear Pairs 37
4-3-1 Gear Pairs without Applied Modification 37
4-3-2 Gear Pairs with Applied Modification 40
4-4 Bearing Reaction Force, Static Value and Service Life 42
4-5 Calculation of Displacement, Bending Angle and Torsional Angle in Shafts 44
5. Analysis of ADAMS Model with Improvements 47
5-1 Gear Transmission System Excludes Slider in ADAMS 48
5-2 Gear Transmission System Includes Slider in ADAMS 49
5-2-1 Influence Impact Force of Slider on Contact Gear Forces 49
5-2-2 Influence Torque on Root and Flank Safety Factors of Gears 51
5-2-3 Amount of Locking Force, Applied to the Lock Drive Shaft 52
5-2-4 Modification of the Model with Offset of Slider Position 55
6. Conclusions 60
Appendix I: Bearing Catalog 62
References 64
Personal vitae 68
參考文獻 [1] SEYI Pressing Ahead, Selling Catalogue, SAG (Straight Slide Crank Press) Series, Taiwan, 2020.
[2] M.P. Groover, J. Wiley, and Sons, “Fundamental of modern manufacturing Materials, Processes and systems,” 4th ed., pp. 58-82, 2010.
[3] K. Osakada, K. Mori, T. Altan, and P. Groche, “Mechanical servo press technology for metal forming,” 2th ed., pp. 651-672, 2011.
[4] R. Halicioglu, L. Dulger, and T. Bozdana, “Mechanisms, classifications, applications of servo presses: review with comparisons,” Journal of Engineering Manufacture, Vol. 230, No. 7, pp. 1177-1194, 2015.
[5] W.T. Becker, and R.J. Shipley, “Failure Analysis and Prevention. Classification of Gear Failures,” ASM International, pp. 75-131, 2002.
[6] F.L. Litvin, and A.F. Fuentes, “Gear Geometry and Applied Theory,” 2th ed., Cambridge University Press, Cambridge, UK, 2004.
[7] L. Zhao, R.C. Frazer, and B. Shaw, “Comparative study of stress analysis of gears with different helix angle using the ISO 6336 standard and tooth contact analysis methods,” Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, Vol. 230, No. 7-8, pp. 1350-1358, 2016.
[8] T.J. Lisle, B.A. Shaw, and R.C. Frazer, “External spur gear root bending stress: a comparison of ISO 6336, AGMA 2101-D04, ANSYS finite element analysis and strain gauge techniques,” Mechanism and Machine Theory, Vol. 111, pp. 1-9, 2017.
[9] KISSsoft 03/2018, Tutorial 8, Verifying a cylindrical gear pair, 2018.
[10] M. Herda, “Assessment of the energy balance on test bench with open power flow and closed power flow for testing of planetary gears,” International Conference of Materials Science and Engineering, Vol. 393, pp. 012052, 2018.
[11] SKF, General catalogue, Rolling bearings, 2016.
[12] Koyo, General catalogue, Large size ball and roller bearings, 2019.
[13] KISSsoft 03/2018, Tutorial 7, Roller bearings, 2018.
[14] E. Dragoni, “Optimal design of tapered roller bearings for maximum rating life under combined loads,” Mechanics & Industry, Vol. 18(1), pp. 112, 2017.
[15] S.S. Crețu, “The effect of primary loading on fatigue life of cylindrical roller bearings,” IOP Conference Series: Materials Science and Engineering, Vol. 147, pp. 012011, IOP Publishing, 2016.
[16] M. Fillon, W. Dmochowski, and A. Dadouche, “Numerical study of the sensitivity of tilting pad journal bearing performance characteristics to manufacturing tolerances: steady-state analysis,” Tribology Transactions, Vol. 50(3), pp. 387-400, 2007.
[17] 徐峰; 李庆祥. 精密机械设计. 清华大学出版社有限公司, pp.627-628, 2005.
[18] S.M. Bilal, J. Jae-Yeon, and P. Dong-Sam, “Finite element analysis coupled artificial neural network approach to design the longitudinal-torsional mode ultrasonic welding horn,” The International Journal of Advanced Manufacturing Technology, 107(5-6), pp. 2731-2743, 2020.
[19] M. Slogen, “A Computer-Aided Approach for Analyzing Contacts in Spur and Helical Gears,” Master’s Thesis in Product Development, Chalmers University of Technology, Sweden, pp. 21-28, 2013.
[20] B. Mahr, and H. Dinner, “Contact analysis for planets in KISSsoft, KISSsoft manual,” 6th ed., 2014.
[21] L. Norton, “ADAMS Tutorial Kit for Mechanical Engineering courses,” 2th ed., 2017.
[22] Y.R Lu, and Y.R. Wu, “Vibration characteristic simulation of two-stage gear reducer with sliding bearing and selection of optimal bearing clearance,” The 24th National Conference on Sound and Vibration, Kaohsiung, 2016.
[23] J. Frêne, D. Nicolas, B. Degueurce, D. Berthe, and M. Godet, “Hydrodynamic lubrication: bearings and thrust bearings,” Vol. 33, pp. 113-142, 1990.
[24] S. Rao, “Mechanical vibrations,” 5nd ed., Boston, pp. 189-205, 2011.
[25] K.L. Johnson, and K.L. Johnson, “Contact mechanics,” Cambridge University Press, Vol. 2, pp. 104-168, 1987.
[26] J. Giesbers, “Contact Mechanics in MSC ADAMS-A technical evaluation of the contact models in multibody Dynamics software MSC ADAMS,” Bachelor Thesis, University of Twente, pp. 42-47, 2012.
[27] J.M. Meagher, D. Kong, C. Xu, X. Wu, and Y. Wu, “Nonlinear Contact Analysis of Gear Teeth for Malfunction Diagnostics,” Conference and Exposition on Structural Dynamics, Florida, 2008.
[28] L.N. Hand, and J.D. Finch, “Analytical Mechanics,” Cambridge University Press, pp. 283-339, 1998.
[29] A.V. Javtoushenko, A.V. Javtoushenko, and O.A. Kalantaieva, “Kinematic characteristics desaxial-bar slider-crank mechanism crank presses,” Modern technics and technologies journal, Moscow, 2014.
指導教授 吳育仁(Yu-Ren Wu) 審核日期 2021-9-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明