博碩士論文 106326014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.145.201.130
姓名 邱楚為(Chu-Wei Chiu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以系統動力模式評量TNCU系統 設計與操控方法之發展
相關論文
★ 彩色濾光片生產線清潔生產之改善研究★ 以離子交換法處理半導體廠氫氧化四甲基銨廢液之研究
★ 建立量測水位、MLSS濃度與SS濃度及污泥沉澱速度光學量測裝置之研究★ 奈米晶相Fe(OH)3催化臭氧反應程序處理油煙VOCs之發展
★ 無塵室揮發性有機污染物防制對策的探討★ 應用數位影像技術於廢水真色色度監測之研究
★ 污水處理廠操作最佳化之研究★ 河川流域水土資源承載力與永續力評量模式之發展
★ 單槽連續進流回分式活性污泥系統微生物菌相之研究★ 單槽連續進流回分式活性污泥系統溶氧控制之研究
★ 工業區廢水管理資訊系統之發展與建立-以觀音工業區為例★ 河川流域水管理系統動力學模式之發展與建立
★ 連續流回分式活性污泥系統好氧相曝氣控制策略之研究-線上即時量測溶氧轉換率與需氧量方法之建立★ 智慧型環境詞彙庫之發展與建置
★ 環境法規資料庫之發展與建置★ 連續流循序批分式活性污泥系統 好氧相即時曝氣控制策略之發展 — 低溶氧生物脫氮除磷程序控制技術之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-10-28以後開放)
摘要(中) 本研究對象為TNCU活性污泥處理系統是透過微生物作用將水中碳、氮、去除及磷移除以達到滿足出流水標準之目的,而一般TNCU廢水處理系統屬半開放性的系統,外界環境變化皆會影響污水水質特性,且目前污水處理系統設計多使用穩態數學模式,污水廠操作方式皆是採用固定式操作與控制方法,而人工水質檢測與量測方法需要耗費大量的人力物力及財力,加上微生物本身菌群組成與微生物對各項物質能量轉化過程難以量化,無法應付系統進流與系統各槽水質水量隨著時間變動的動態污水處理系統。面對整個處理系統呈現高度複雜的關係,以利用系統動力模式在非穩定的動態系統比起傳統控制系統更兼具全面性與人性化。因此,本研究主要為將可量化非結構性問題的系統動力模式,以系統動力學概念分析系統內各項物質與微生物間的關連與運作機制,並以此為基礎發展與建立TNCU系統動力模式,作為系統動力模式運作之輸入參數並計算系統出流水質,以評量找出TNCU系統問題的原因,期望能提升系統出流水質的穩定度,以做為後續系統操作控制與維護管理TNCU系統正常運作之決策工具。。而本研究的TNCU系統應符合微生物反應作用機制的反應趨勢,也須符合污水處理系統達到同時去氮除磷的目的,因此,本研究的模式可應用於污水處理系統,藉由評量程序模擬不同調整後的系統條件,以滿足TNCU系統功能之目的。解決現今許多廢水處理場設計上沒有依據並且大多都根據設計者經驗去進行設計的問題。
摘要(英) The thesis of this research is the TNCU treatment system, which removes carbon, nitrogen, removal and phosphorus from water through the action of microorganisms in order to meet the purpose of running water standards. The general TNCU wastewater treatment system is a semi-open system, and the external environment changes. It will affect the characteristics of sewage water quality, and the current sewage treatment system design mostly uses steady-state mathematics. The sewage treatment plant operation method uses fixed operation and control methods, and the manual water quality detection and measurement methods require a lot of human resources, material resources, and financial resources. In addition, it is difficult to quantify the energy conversion process of various substances by the microbial flora composition and the microorganisms themselves, and cannot cope with the dynamic sewage treatment system where the inflow of the system and the water quality and quantity of the tanks of the system change. Facing the entire processing system, it presents a highly complex relationship, and it is more comprehensive and user-friendly than the traditional control system in the unstable dynamic system by using the system dynamic mode. Therefore, this research is mainly to analyze the system dynamics model can quantify non-structural problems, analyze the relationship and operation mechanism between various substances and microorganisms in the system with the concept of system dynamics, and develop and establish the TNCU system dynamic model based on this., As the input parameter of the system power mode operation and calculate the system output water quality to evaluate and find out the cause of the TNCU system problem. I expect it to improve the stability of the system output water quality for subsequent system operation control and maintenance management of the TNCU system Decision-making tool for normal operation. The TNCU system of this study should conform to the reaction trend of the microbial reaction mechanism, and it must also conform to the purpose of simultaneous nitrogen and phosphorus removal in the sewage treatment system. Therefore, the model of this study can apply to the sewage treatment system and simulated by the evaluation procedure. Different adjusted system conditions to meet the purpose of the TNCU system function. Solve the problems that many wastewater treatment plants have no basis in design and I designed most of them based on the experience of designers.
關鍵字(中) ★ TNCU系統
★ 系統動力模式
★ 污水處理廠
關鍵字(英) ★ TNCU systems
★ System dynamics model
★ wastewater treatment plant
論文目次 摘要 …………………………………………………………………………….i
Abstract ……………………………………………………………………………ii
目錄 …………………………………………………………………………...iii
圖目錄 …………………………………………………………………………...iv
表目錄 ……………………………………………………………………………v
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 廢水生物處理系統設計與操控之現況與問題 3
2.2 廢水生物處理系統設計與操控問題之原因 4
2.3 廢水生物處理系統系統設計與操控之改善策略 6
2.4 TNCU系統發展與現況 6
2.5 系統動力模式發展與現況 6
第三章 研究方法 8
3.1 研究流程 8
3.2 系統動力模式的發展與建置流程與方法的建立 10
3.3 TNCU系統界定 10
3.4 生物處理系統反應機制彙整 12
3.5 TNCU運作機制建立 14
3.6 TNCU系統動力模式建置 15
3.7 TNCU系統設計與操控之評量 31
第四章 結果與討論 32
4.1 系統動力模式的發展與建置流程與方法的建立之結果與討論 32
4.2 TNCU系統界定之結果與討論 37
4.3 生物處理系統反應機制結果與討論 40
4.4 TNCU運作機制建立之結果與討論 53
4.5 TNCU系統動力模式建置之結果與討論 65
4.6 TNCU系統設計與操控評量之結果與討論 102
第五章 結論與建議 110
5.1. 結論 110
5.2. 建議 110
參考文獻 …………………………………………………………………………112
參考文獻 [1] J. F. Andrews, “Dynamic control of wastewater treatment plants”.Environmental science & technology,28(9), 434A-440A, 1994.
[2] Y. Barlas, “System dynamics: systemic feedback modeling for policy analysis”.System,1(59), 2007.
[3] J. S. Cech and P. Hartman, “Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal system”. Wat. Res. 27(7), 1219-1225, 1993.
[4] J. Charpentier, H. Godart, G. Martin, and Y. Mogno, “Oxidation reduction potential (ORP) regulation as a way to optimize aeration and C, N and P removal: experience basis and various full-scale example”. Wat. Sci. Technol., 21, 1209-1223, 1989.
[5] G. Cybenko, “Approximation by superpositions of a sigmoidal function”. Mathematics of control, signals and systems, 2(4), 303-314, 1989.
[6] B. K. Das, M. Bandyopadhyay & P. K. Mohapatra, “System dynamics modeling of biological reactors for waste water treatment”. Journal of Environmental Systems, 25(3), 213-240, 1997.
[7] A. L. Downing, L. J. Scagg, “The effect of synthetic detergents on the rate of aeration in diffused air activated sludge plants”. Water Waste Treatment Journal, 7: 102, 1958.
[8] A. L. Downing, H. A. Painter, G. Knowles, “Nitrification in the activated sludge process”. Journal of the Institute of Sewage Purification 64(2): 130-158, 1964.
[9] L. Benedetti, J. Langeveld, A. Comeau, L. Corominas, G. Daigger, C. Martin, P. A. Vanrolleghem, “Modelling and monitoring of integrated urban wastewater systems: review on status and perspectives” Water Science and Technology, 68(6), 1203-1215, 2013.
[10] M. Henze, W. Gujer, T. Mino, M. C. M. Van Loosdrecht, “Activated sludge models ASM1, ASM2, ASM2d and ASM3” IWA publishing, 2000.
[11] S. Park, B. J. Kim, S. Y. Jung, “Simulation methods of a system dynamics model for efficient operations and planning of capacity expansion of activated-sludge wastewater treatment plants” Procedia Engineering, 70, 1289-1295, 2014.
[12] Rathore, Komal, "Dynamic Modeling of an Advanced Wastewater Treatment Plant" (2018).
[13] 尤世雄,「CFSBR水質推估公式之發展與建立」,碩士論文,國立中央大學環境工程研究所,2006。
[14] 楊朝仲,系統動力學: 思維與應用,五南,2007年。
[15] 屠益民,張良政,系統動力學: 理論與應用,智勝文化事業有限公司,2010年。
[16] 白子易,「下水道系統生化動力模式建立之研究」,博士論文,國立中央大學環境工程研究所,2001。
[17] 陳政傑,「利用系統動力模式建立 CFSBR 即時自動操作與控制策略之研究」,碩士論文,國立中央大學環境工程研究所,2014。
指導教授 廖述良(Shu-Liang Liaw) 審核日期 2021-10-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明