博碩士論文 108323093 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.222.34.209
姓名 沈靖翔(Jing-Xiang Shen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 水中微粒沉降分離實驗與分析
相關論文
★ 雙頻帶微型電磁式發電機之研製★ 經驗模態分解法之清醒與麻醉情形下的腦波特徵判別
★ CMOS-MEMS電容式加速度計之設計與製作★ 銅電鍍製程於微小結構製作之應用
★ 平面雙軸式磁通閘之分析與應用★ 低頻振動能量擷取器之設計
★ 聲波聚焦噴墨搭配菲涅爾透鏡之設計★ 微粒子於溶液中操控之模擬
★ 應用希爾伯特黃轉換以C語言環境開發腦機介面訊號處理★ 平面雙軸式磁通閘之製作與改良
★ 單一自由度微型電熱鑷子之設計與分析★ 加工液濁度檢測器之設計
★ Underwater Position Control of Particles★ 立體微型振動發電機之研製
★ 三維導電微成型技術開發應用於微機電系統之研究★ 用於電火花加工的油質感測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究成功利用聲波使微粒進行沉降從而達到分離。首先利用模擬進
行調變波之動態分析,再針對不同微粒進行實驗規劃與設計,以確認各個參
數對實驗之影響。而不同密度或不同粒徑之微粒皆會產生不同之沉降速度,
因此需透過實驗取得調變波之參數進行分離實驗。最後依據單顆或多顆微
粒進行不同情況之分離實驗,並對其結果與數據進行分析與討論。而本實驗
所使用之聲波不具侵入性,且可操控之粒徑範圍廣,因此選擇聲波進行分離
實驗之開發。
摘要(英) This study successfully uses sound waves to separate particles. In order to
confirm the feasibility of the method, we also use simulation to analyze the
dynamics of the modulated wave. The separation status is analyzed by different
parameters, such as active time and non-active time. Since different particles have
different sedimentation velocity, various parameters of the modulated wave are
obtained through experiments. These parameters will contribute to the success
rate of the separation experiment.
關鍵字(中) ★ 聲波
★ 微粒
關鍵字(英)
論文目次 摘要 I
ABSTRACT II
目錄 III
圖目錄 V
表目錄 VII
第一章 緒論 1
1.1 前言 1
1.2 研究目的與動機 1
1.3 非接觸式微粒分離背景回顧 2
1.4 聲波鑷子分離介紹 5
第二章 基礎理論 9
2.1 駐波理論 9
2.2 流體運動方程式 10
2.2.1 連續方程式 10
2.2.2 動量方程式 11
2.2.3 流體狀態方程式 11
2.3 線性波動方程式 12
2.4 聲輻射力 13
2.4.1 任意聲場中小球體之聲輻射力 14
第三章 實驗架設與設計 15
3.1 實驗架構 15
3.2 聲阻抗匹配理論 16
3.3 聲流產生機制 18
3.4 材料參數 20
3.5 實驗模擬與設計 22
3.5.1 駐波場模擬分析 22
3.5.2 調變波模擬分析 26
3.5.3 模擬討論與實驗設計 28
第4章 實驗結果與討論 34
4.1 實驗結果 34
4.1.1 單與單分離結果與討論 34
4.1.2 群與單分離結果與討論 42
4.1.3 群與群分離結果與討論 45
4.2 實驗討論彙整 48
第五章 結論與未來展望 54
5.1 結論 54
5.2 未來展望 54
參考文獻 56
參考文獻 [1] A. Lenshof and T. Laurell, “Continuous separation of cells and particles in microfluidic systems,” Chemical Society Reviews, vol. 39, no. 3, pp. 1203-1217, 2010.
[2] M. Suwa and H. Watarai, “Magnetoanalysis of micro/nanoparticles: A review,” Analyca Chimica Acta, vol. 690, no. 2, pp. 137-147, 2011.
[3] M. P. Mac Donald, C. Gabriel Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature, vol. 426, no. 6965, pp. 421-424, 2003.
[4] U. Kim, J. Qian, S. A. Kenrick, P. S. Daugherty, and H. T. Soh, “Multitarget dielectrophoresis activated cell sorter,” Analytical Chemistry, vol. 80, no.22, pp. 8656-8661, 2008.
[5] X. Luo, J. Cao, H. Gong, H. Yan, and L. He, “Phase separation technology based on ultrasonic standing waves: A review,” Ultrasonics Sonochemistry, vol. 48, pp. 287-298, 2018.
[6] X. Luo, J. Cao, J. Ren, H. Yan and L. He, “Suspension characteristics of water droplet in oil under ultrasonic standing waves,” Ultrasonics Sonochemistry, vol. 39, pp. 461-466, 2017
[7] X. Luo, J. Cao, H. Yin, H. Yan, and L. He, “Droplets banding characteristics of water-in-oil emulsion under ultrasonic standing waves,” Ultrasonics Sonochemistry, vol. 41, pp. 319-326, 2018.
[8] F. Petersson, A. Nilsson, C. Holm, H. Jonsson, and T. Laurell, “Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels,” Analyst, vol. 129, no. 10, pp. 938-943, 2004.
[9] L. Meng, F. Cai, F. Li, W. Zhou, L. Niu, and H. Zheng, “Acoustic tweezers,” Journal of Physics D: Applied Physics, vol. 52, no. 27, p. 273001 2019.
[10] X. Ding, Z. Peng, S. C. S. Lin, M. Geri, S. Li, P. Li, Y. Chen, M. Dao, S. Suresh, and T. Jun Huang, “Cell separation using tilted-angle standing surface acoustic waves,” Proceedings of the National Academy of Sciences, vol. 111, no. 36, pp. 12992-12997, 2014.
[11] D. J. Collins, T. Alan, and A. Neild, “Particle separation using virtual deterministic lateral displacement (vDLD)” Lab on a Chip, vol. 14, no. 9, pp. 1595-1603, 2014.
[12] J. Nam, H. Lim, C. Kim, J. Kang and S. Shin, “Density-dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave,” Biomicrofluidics, vol. 6, no.2, p.024120 2012.
[13] T. Kozuka, T. Tuziuti, and H. Mitome, “Non-contact micromanipulation using an ultrasonic standing wave field,” In Proceedings of Ninth International Workshop on Micro Electromechanical Systems, IEEE, pp. 435-440, 1996.
[14] 白明憲,工程聲學,全華圖書,台北市,民國九十三年。
[15] M. A. Andrade, N. Pérez and J. C. Adamowski, “Review of progress in acoustic levitation,” Brazilian Journal of Physics, vol 48, no.2, pp. 190-213, 2018.
[16] L. P. Gor′kov, “On the Forces Acting on a Small Particle in an Acoustical Field in an Ideal Fluid,” Soviet Physics Doklady, vol. 6, p. 773, 1962
[17] A. Hirose and K. E. Lonngren, “Introduction to Wave Phenomena.” R.E. Krieger Publishing Company, 1991.
[18] M. Wiklund, R. Green, and M. Ohlin, “Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices,” Lab on a Chip, vol. 12, no. 14, pp. 2438-2451, 2012.
[19] H. Mitome, “The Mechanism of Generation of Acoustic Streaming,” Electronics and Communications in Japan (Part III: Fundamental Electronic Science), vol. 81, no. 10, pp. 1-8, 1998.
[20] A. Castro and M. Hoyos, “Study of the onset of the acoustic streaming in parallel plate resonators with pulse ultrasound,” Ultrasonics, vol. 66, pp. 166-171, 2016
[21] I. Leibacher, P. Reichert, and J. Dual, “Microfluidic droplet handling by bulk acoustic wave (BAW) acoustophoresis,” Lab on a Chip, vol. 15, no. 13, pp. 2896-2905, 2015.
指導教授 陳世叡(Shih-Jui Chen) 審核日期 2021-9-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明