博碩士論文 108323087 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.141.32.53
姓名 陳聖學(Sheng Shiue, Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 分群演算法應用於自動出入料裝置路徑規劃研究
相關論文
★ 應用於車身號碼打刻機之號碼辨識★ 複合式掌紋識別系統
★ 圓形偵測在OLED Panel 檢測上的應用★ MLCC薄膜厚度即時線上影像檢測技術之研發
★ 全自動微鑽針影像檢測系統之研究★ 應用類神經網路預測COG製程對於中小尺寸TFT-LCD產生之應力狀態
★ 應用機器視覺系統檢測高滲透壓刀輪切割 TFT-LCD 玻璃後斷面之研究★ 低成本輕量化機械手臂之研究
★ 應用在同軸電纜加工之雷射光斑導引機構設計與分析★ 表面電漿波共振-非旋轉方式的新機構設計理論
★ 網路協同式機械設計系統研發★ 軟膠囊自動辨識系統
★ 心電訊號之擷取與分析★ 盲人圖樣感知輔助裝置之研發設計
★ 非旋轉式表面電漿共振儀之改良與實現★ 可攜式無線心電訊號擷取器之設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-30以後開放)
摘要(中) 隨著高科技生產技術演進及高速網路基礎建設普及,以遠端網路控制及自動化電腦排程以降低生產及管理成本的現象,在現代工廠中越見普遍。當硬體設施趨於完備後,欲再降低時間以及金錢成本的方式不外為增進演算法效能,藉此降低硬體運算負擔及更快速的取得可接受的成果,若解決方案本身具有特有之限制條件,開發可適用特殊狀況之非傳統演算法便愈發重要。
本文以受攜帶料件上限,且具有往復回程補充材料能力的數值加工機或機械手臂為討論目標,求其路徑規劃的序列解。由於此類問題運作環境近似特化的車輛途程問題(Vehicle Routing Problem, VRP),無法在可預期的有限時間內取得最佳解,故本研究選擇透過優化既有分群演算法並結合遞迴之概念,以求得路徑選擇中之近似解,期望降低硬體計算負擔 及時間複雜度,使之應用於各式設計上具有特殊限制之場域,減少運算時間並獲得更佳之結果。
本研究利用C#語言撰寫程式,以K-means演算法為核心概念,設計二元離群值初始化方法,利用遞迴方式反覆迭代,直至遍歷所有工作點為止。在亂數產生資料集下,與貪婪演算法(Greedy algorithm)、z形排列法(Zipzap sorting method)、標準K-means演算法比較。本研究之演算方式在工作點數量於二位數以上時,計算出之路徑長度穩定低於與之比較的其他演算法,運算時間遠低於完全歸納法(Complete induction);相較於現有的路徑規劃工具,亦具有運算時間優勢,適合部署於資源受限的SoC嵌入式裝置之上。
摘要(英) Owing to the universality of high-tech production technology and high-speed internet infrastructure, remote manufacturing and automatically process scheduling has been much more common these days in modern factory. To reduce both time and financial costs, we must improve the efficiency of algorithm, which can curtail both computing time and obtain majorized and operational path sequence. Hence, developing specialized solution algorithm for restricted condition can’t be more important nowadays.
This research aims to discuss the sequential solution of computer numerical control machine or robotic arm that is subject to designed capacity, which requires suppling materials from one depot through reciprocating motion. Since this kind of problem is similar to the specialized Vehicle Routing Problem (VRP), it is impossible to obtain the best solution in non-deterministic polynomial time. Therefore, we decided to create an algorithm by improving exiting algorithm and combine it with other algorithms for this research. This algorithm should obtain approximate solution in all feasible path sequence and reduce both computational burden and time complexity.
The core concept of this algorithm is based on K-means algorithm and is implemented by C# in this research. The initialized method this algorithm is a customized binary outliers’ method. After that, the algorithm will recursively pick appropriate nodes as clusters and renew the unsatisfied node list till the list is completely traversed. By comparison, this algorithm is confirmed to achieve better performance on path cost than Greedy algorithm, Zipzap sorting method, or typical K-means algorithms when the number of unsorted nodes is above a dozen. Furthermore, the computation time of this algorithm is also far below sorting nodes by complete induction method, which can be deemed as predictable finite time.
關鍵字(中) ★ 路徑規劃
★ 分群演算法
★ K-平均演算法
關鍵字(英) ★ Path Planning
★ Clustering Algorithm
★ K-means Algorithm
論文目次 目錄
摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的與方法 2
1-3 文獻回顧 3
第二章 基本原理 5
2-1 聚類演算法 5
2-2 貪婪演算法 7
2-3 深度優先搜尋法 8
第三章 研究範圍及方法 9
3-1 研究範圍 9
3-2 參數及符號定義 10
3-3 分群演算法 11
3-3-1 初始化方法 13
3-3-2 K-means分群 14
3-3-3 遞迴拆分 14
3-3-4 群內排序 19
3-4 貪婪演算法 21
3-5 Zipzap排序法 22
第四章 實驗結果與討論 23
4-1 電路板焊點路徑規劃測試 23
4-2 大量檔案演算法測試 26
4-3 需求點數量比較 27
4-4 演算法分群特性觀察 29
4-5 演算路徑長落點機率密度分布圖 32
4-6 演算法運算時間分析 36
4-7 與開源工具比較 40
第五章 結論與未來展望 43
5-1 結論 43
5-2 未來展望 44
第六章 參考文獻 45
參考文獻 [1]G. B. Dantzig and J. H. Ramser, “The Truck Dispatching Problem”, Management Science, Vol. 6, No. 1, pp. 80-91, Oct. 1959
[2]Steinhaus, H., “Sur la division des corps mat ́eriels en parties”, Bulletin de l’acad ́emiepolonaise des sciences, Cl. III — Vol. IV, No. 12, 1956.
[3]MacQueen, J. B, “Some Methods for classification and Analysis of Multivariate Observations”, Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability., University of California Press: 281–297, 1967.
[4]Marco Capó, Aritz Pérez, and José A. Lozano, “A Recursive K-means Initialization Algorithm for Massive Data”, Actas de la XVI Conferencia CAEPIA, Albacete, 2015.
[5]Adyan Nur Alfiyation, Wayan Firdaus Mahmudi, and Yusuf Priyo Anggodo, “K-Means Clustering and Genetic Algorithm to Solve Vehicle Routing Problem with Time Windows Problem”, Indonesian Journal of Electrical Engineering and Computer Science, Vol. 11, No. 2, pp.462-468, Aug. 2018.
[6]Pranavi Singanamala, K. Dharma R, and P. venkataramaiahh, “Solution to a Multi Depot Vehicle Routing Problem Using K-means Algorithm, Clarke and Wright Algorithm and Ant Colony Optimization’, International Journal of Applied research ISSN 0973-4562, Vol.13, No. 21, pp. 15236-15246, 2018.
[7]J. Oyelade, et al., "Data Clustering: Algorithms and Its Applications", 2019 19th International Conference on Computational Science and Its Applications (lCCSA), pp. 71-81, 2019.
[8]David Arthur, Sergei Vassilviskii, “K-Means++: The Advantages of Careful Seeding”, SODA ′07: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp.1027-1035, 2007.
[9]Leonard Kaufman, Peter J. Rousseeuw, “Partitioning Around Medoids (Program PAM)”, Wiley Series in Probability and Statistics, 1990.
[10]Robert Tarjan, “Depth-First Search and linear graph algorithm”, 12th Annual Symposium on Switching and Automata Theory, 1971.
指導教授 黃衍任(Yean Ren, Hwang) 審核日期 2021-10-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明