![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:16 、訪客IP:18.116.230.40
姓名 阿奇邁(Achmad Andi Azhari) 查詢紙本館藏 畢業系所 機械工程學系 論文名稱
(Analysis Internal Reforming Proton Conducting SOFC-MGT Hybrid System for High Performance with Lowest Emission Fueled by Biofuels)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
至系統瀏覽論文 (2026-7-1以後開放)
摘要(中) 摘要
全球發電中的可再生能源從 2019 年的 27%增加到 2020 年的 29%,是歷史上年度
最大的增長。在電力行業中,2020 年的 CO2排放量減少了 3.3%(即 450 噸),這是有記
錄以來最大的相對及絕對减少量。儘管去年 COVID-19 大流行減少了電力需求,但可再生
能源發電的加速擴張是該部門減少碳排放的最大貢獻者。為了增加綠色能源的使用,固態
氧化物燃料電池是未來的能源之一,因為在高溫下產生的任何一氧化碳都會轉化為二氧化
碳,因此 SOFC 的廢氣排放量非常低。
質子傳導及內部重組將與 SOFC 結合使用,質子傳導提供了更好的電導率,因為質
子離子比氧化物離子小得多,且由於系統的複雜性及內部溫度分佈均勻,所以在 SOFC 中
將採用內部重組器。此外,SOFC 可以在高溫下運行,因此可以與其他底部循環(例如
MGT)集成,以提高系統效率。化學計量的蒸汽轉化為碳(S/C),以控制 CO2 的產生。
電解質的電導率隨溫度升高而增加,以通過控制分割比(SPR)、空氣的化學計量比
(StAir)與燃料的化學計量比(StAir)來控制溫度。對甲烷,丙烷和乙醇燃料進行了研
究,基於熱力學分析來模擬,其使用 Matlab 7.6 版/ Simulink 7.1 版/ Thermolib 5.1.1.5353 開
發,並使用文獻中的公開數據進行了驗證。
結果表明,在 SPR、StAir 和 StFuel 變化的情况下,蒸汽碳比(S/C)對 CO2 產量
的影響為:(1)對 S/C 和 SPR 的影響:方案 3 是甲烷燃料更好的配置,當 SPR 為
0.6-0.8 時,CHP 效率占 90%,在每個S/C 變化中,當S/C 1 和 SPR 為 0.8 時,CO2產量
成功減少,占0.0001 莫耳/秒。(2)對S/C和StAir的影響:降低StAir效能將會提高,結果
表明,在 S/C 1 中降低蒸汽碳比顯著降低至 0.0000079 莫耳/秒時,採用方案 3 的配置更
好,當 StAir 為 1.5 時,CHP 效率為 94%。ii
(3)影響 S/C 和 StFuel:通過增加 StFuel 意味著增加 廢燃料在燃燒室中燃燒以提高系統
溫度,因此功率和效率也會隨著溫度的升高而增加,因為電池電導率會隨著溫度的升高
而增加。以丙烷為燃料的方案 3 之效率最高,其 S/C 1 和 燃料化學計量比分別為 88%
和 1.08,其次是甲烷和乙醇,分別為 83%和 85%。對於 CO2 產量,甲烷的產量最低,
為 0.000008 莫耳/秒。結論:使用 S/C 1 可以减少 CO2 的產生。通過控制 SPR 0.6-0.8,
降低空氣化學計量比至 1.5,增加燃料使用量至 1.08,可以提高效率。摘要(英) ABSTRACT
Renewable energy in global power generation increased from 27% in 2019 to 29% in 2020,
the largest annual increase in history, In the power sector, CO2 emissions fell by 3.3% (or 450 Mt)
in 2020, a relative and absolute reduction biggest on record. While the COVID-19 pandemic
reduced electricity demand last year, the accelerated expansion of power generation from
renewable energy is the biggest contributor to reducing emissions from the sector. Take the
moment to increase the use of green energy, solid oxide fuel cell is one of the future energy
because any carbon monoxide produced is converted to carbon dioxide at the high operating
temperature, therefore SOFC have very low emissions in exhaust gases.
Proton conducting, internal reforming will have combined with SOFC, due to proton
conducting has a provide better conductivity because proton ion is much smaller than oxide ion,
and to complexity of the system with well distribution temperature internally reformer will have
used inside of SOFC. Also SOFC can operate in high temperature so can be integrated with other
bottom cycles such us MGT to increase efficiency of the system. Stoichiometry steam to carbon
(S/C) to control production of CO2. The electrolyte conductivity increase with increasing
temperature, to control temperature by controls split ratio (SPR), stoichiometry of air (StAir), and
stoichiometry of fuel (StAir). There are investigated for methane, propane and ethanol fuels. The
simulation based on the thermodynamic analysis and developed using Matlab Version
7.6 / Simulink Version 7.1 / Thermolib 5.1.1.5353 and validated using published data in the
literature.
Result show, Steam to carbon (S/C) effect for CO2 production with SPR, StAir and StFuel
variation: 1). Effect S/C and SPR: Schematic 3 is better configuration with methane fuel have
CHP efficiency is account of 90% when SPR 0.6-0.8, in each S/C variation and CO2 production
successfully decreases when in S/C 1 & SPR 0.8 the account was 0.0001 mole/s. 2). Effect S/C
and StAir: By decreasing StAir performance will increase result show using schematic 3 is better
configuration when decreasing steam to carbon ratio has a significant decrease until 0.0000079
mole/s and The CHP efficiency is 94 % when 1.5 StAir in S/C 1. 3). Effect S/C and StFuel: By
increasing StFuel means increase waste fuel to burn in combustor to increase temperature system, so
power and efficiency also increase because conductivity cells increase with increasing
temperature. Configuration 3 with propane fuel is highest efficiency with account 88% in S/C 1iv
and 1.08 fuel stoichiometry ratio, then 83% and 85 % for methane and ethanol. For CO2 production
methane have lowest production with account 0.000008 mole/s. Conclusion, by using S / C 1 is
proven to reduce CO2 production. And efficiency can be increased by controlling SPR 0.6-0.8,
reducing air stoichiometry until 1.5 and increasing fuel use until 1.08.關鍵字(中) ★ 內部重組
★ 質子傳導固態氧化物燃料電池
★ 微型燃氣渦輪機 (MGT)
★ 混合配置建模
★ 蒸汽到碳(S / C)效應
★ Matlab Simulink關鍵字(英) ★ Internal Reforming
★ Proton Conducting Solid Oxide Fuel Cell
★ Micro Gas Turbine (MGT)
★ Configuration Hybrid Modelling
★ Steam to Carbon (S/C) effect
★ Matlab Simulink論文目次 CONTENTS
Abstract (Chinese) .........................................................................................................................i
Abstract (English)........................................................................................................................iii
Acknowledgements....................................................................................................................... v
Contents.......................................................................................................................................vi
List of Figures..............................................................................................................................ix
List of Tables .............................................................................................................................xvi
List of Symbols.........................................................................................................................xvii
CHAPTER 1 INRODUCTION..................................................................................................... 1
1.1 Backgrounds .............................................................................................................. 1
1.2 Literature Review....................................................................................................... 3
1.3 Motivation.................................................................................................................. 5
CHAPTER 2 MODEL AND THEORITICAL............................................................................. 7
2.1 Model .......................................................................................................................... 7
2.1.1 Internal Reformer......................................................................................... 7
2.1.2. Proton conducting SOFC (pSOFC) ............................................................ 9
2.1.2.1. Activation polarization............................................................... 10
2.1.2.2. Ohmic polarization..................................................................... 10
2.1.2.3. Concentration polarization......................................................... 11
2.1.3 Micro Gas Turbine..................................................................................... 12
2.1.4 Compressor ................................................................................................ 12
2.1.5 Combustor.................................................................................................. 12
2.1.6 The 3-Way Valve (Splitter) ....................................................................... 13
2.1.7 Mixer.......................................................................................................... 13
2.1.8 Heat Exchanger.......................................................................................... 13
2.1.9 Efficiency Definition ................................................................................. 14
CHAPTER 3 METHODOLOGY ............................................................................................... 15
3.1 Procedure .................................................................................................................. 15
3.2 Validation.................................................................................................................. 16vii
3.3 Modelling Assumption and Operating Conditions................................................... 16
3.4 The Configuration Model ......................................................................................... 17
3.4.1 Configuration1 ............................................................................................ 18
3.4.2 Configuration 2 .......................................................................................... 19
3.4.3 Configuration 3 .......................................................................................... 19
3.5 Distribution temperature on inlet anode and cathode ............................................... 24
CHAPTER 4 RESULT AND DISCUSSION............................................................................. 25
1.1 Effect Temperature for biofuels............................................................................... 25
4.1.1. Reformer single component...................................................................... 25
4.1.2. IR pSOFC single component .................................................................... 28
4.2. Effect St S/C on Split ratio (SPR)............................................................................ 30
4.2.1. Methane..................................................................................................... 30
4.2.1.1. Configuration 1 for methane fuel............................................... 30
4.2.1.2 Configuration 2 for methane fuel................................................ 34
4.2.1.3 Configuration 3 for methane fuel................................................ 38
4.2.2. Propane ..................................................................................................... 43
4.2.2.1. Configuration 1 for propane fuel ............................................... 43
4.2.2.2 Configuration 2 for propane fuel ................................................ 47
4.2.2.3 Configuration 3 for propane fuel ................................................ 51
4.2.3. Ethanol ...................................................................................................... 55
4.2.3.1. Configuration 1 for ethanol fuel ................................................ 55
4.2.3.2 Configuration 2 for ethanol fuel ................................................. 59
4.2.3.3 Configuration 3 for ethanol fuel ................................................. 63
4.3. Effect St S/C on Air Stoichiometry (StAir)............................................................... 67
4.3.1. Methane...................................................................................................... 67
4.3.1.1. Configuration 1 for methane fuel............................................... 67
4.3.1.2 Configuration 2 for methane fuel................................................ 71
4.3.1.3 Configuration 3 for methane fuel................................................ 76
4.3.2. Propane ..................................................................................................... 80
4.3.2.1. Configuration 1 for propane fuel ............................................... 80
4.3.2.2 Configuration 2 for propane fuel ................................................ 84viii
4.3.2.3 Configuration 3 for propane fuel ................................................ 88
4.3.3. Ethanol ...................................................................................................... 92
4.3.3.1. Configuration 1 for ethanol fuel ................................................ 92
4.3.3.2 Configuration 2 for ethanol fuel ................................................. 96
4.3.3.3 Configuration 3 for ethanol fuel ............................................... 100
4.4. Effect St S/C on Fuel Stoichiometry (StFuel).......................................................... 104
4.4.1. Methane................................................................................................... 104
4.4.1.1. Configuration 1 for methane fuel............................................. 104
4.4.1.2 Configuration 2 for methane fuel.............................................. 108
4.4.1.3 Configuration 3 for methane fuel.............................................. 113
4.4.2. Propane ................................................................................................... 117
4.4.2.1. Configuration 1 for propane fuel ............................................. 117
44.2.2 Configuration 2 for propane fuel ............................................... 121
4.4.2.3 Configuration 3 for propane fuel .............................................. 125
4.4.3. Ethanol .................................................................................................... 129
4.3.1. Configuration 1 for ethanol fuel ................................................. 129
4.4.3.2 Configuration 2 for ethanol fuel ............................................... 133
4.4.3.3 Configuration 3 for ethanol fuel ............................................... 137
4.5. Configuration Comparison on S/C ........................................................................ 141
4.6. Fuel Comparison on StFuel...................................................................................... 145
CHAPTER 5 CONCLUSIONS AND SUGGESTIONS .......................................................... 150
5.1 Conclusions............................................................................................................. 150
5.2 Suggestions............................................................................................................. 151
References................................................................................................................................. 152參考文獻 REFERENCES
[1] C. Downie, “Strategies for Survival: The International Energy Agency’s response to a new
world,” Energy Policy, vol. 141, no. March, p. 111452, 2020, doi:
10.1016/j.enpol.2020.111452.
[2] S. J. McPhail, A. Aarva, H. Devianto, R. Bove, and A. Moreno, “SOFC and MCFC:
Commonalities and opportunities for integrated research,” Int. J. Hydrogen Energy, vol. 36,
no. 16, pp. 10337–10345, 2011, doi: 10.1016/j.ijhydene.2010.09.071.
[3] T. Choudhary and Sanjay, “Thermodynamic assessment of advanced SOFC-blade cooled
gas turbine hybrid cycle,” Int. J. Hydrogen Energy, vol. 42, no. 15, pp. 10248–10263, 2017,
doi: 10.1016/j.ijhydene.2017.02.178.
[4] A. Arpornwichanop and Y. Patcharavorachot, “Investigation of a proton-conducting SOFC
with internal autothermal reforming of methane,” Chem. Eng. Res. Des., vol. 91, no. 8, pp.
1508–1516, 2013, doi: 10.1016/j.cherd.2013.05.008.
[5] H. Iwahara, “Proton conducting ceramics and their applications,” Solid State Ionics, vol. 86–
88, no. PART 1, pp. 9–15, 1996, doi: 10.1016/0167-2738(96)00087-2.
[6] Y. Patcharavorachot, N. P. Brandon, W. Paengjuntuek, S. Assabumrungrat, and A.
Arpornwichanop, “Analysis of planar solid oxide fuel cells based on proton-conducting
electrolyte,” Solid State Ionics, vol. 181, no. 35–36, pp. 1568–1576, 2010, doi:
10.1016/j.ssi.2010.09.002.
[7] F. Ranjbar, A. Chitsaz, S. M. S. Mahmoudi, S. Khalilarya, and M. A. Rosen, “Energy and
exergy assessments of a novel trigeneration system based on a solid oxide fuel cell,” Energy
Convers. Manag., vol. 87, pp. 318–327, 2014, doi: 10.1016/j.enconman.2014.07.014.
[8] A. Chitsaz, M. Sadeghi, M. Sadeghi, and E. Ghanbarloo, “Exergoenvironmental comparison
of internal reforming against external reforming in a cogeneration system based on solid
oxide fuel cell using an evolutionary algorithm,” Energy, vol. 144, pp. 420–431, 2018, doi:
10.1016/j.energy.2017.12.008.
[9] S. Sugihara and H. Iwai, “Experimental investigation of temperature distribution of planar
solid oxide fuel cell: Effects of gas flow, power generation, and direct internal reforming,”
Int. J. Hydrogen Energy, vol. 45, no. 46, pp. 25227–25239, 2020, doi:
10.1016/j.ijhydene.2020.06.033.153
[10] T. K. Gogoi and R. Das, “Inverse analysis of an internal reforming solid oxide fuel cell
system using simplex search method,” Appl. Math. Model., vol. 37, no. 10–11, pp. 6994–
7015, 2013, doi: 10.1016/j.apm.2013.02.046.
[11] M. Ni, D. Y. C. Leung, and M. K. H. Leung, “Modeling of methane fed solid oxide fuel cells:
Comparison between proton conducting electrolyte and oxygen ion conducting electrolyte,”
J. Power Sources, vol. 183, no. 1, pp. 133–142, 2008, doi: 10.1016/j.jpowsour.2008.04.073.
[12] M. T. Mehran et al., “Performance characteristics of a robust and compact propane-fueled
150 W-class SOFC power-generation system,” Int. J. Hydrogen Energy, vol. 44, no. 12, pp.
6160–6171, 2019, doi: 10.1016/j.ijhydene.2019.01.076.
[13] D. Saebea, A. Arpornwichanop, and Y. Patcharavorachot, “Thermodynamic analysis of a
proton conducting SOFC integrated system fuelled by different renewable fuels,” Int. J.
Hydrogen Energy, vol. 46, no. 20, pp. 11445–11457, 2021, doi:
10.1016/j.ijhydene.2020.07.264.
[14] X. Ding, X. Lv, and Y. Weng, “Effect of operating parameters on performance and safety
evaluation of a biogas-fueled SOFC/GT hybrid system,” Energy Procedia, vol. 158, pp.
1842–1849, 2019, doi: 10.1016/j.egypro.2019.01.430.
[15] L. Tan, X. Dong, Z. Gong, and M. Wang, “Analysis on energy efficiency and CO2 emission
reduction of an SOFC-based energy system served public buildings with large interior
zones,” Energy, vol. 165, pp. 1106–1118, 2018, doi: 10.1016/j.energy.2018.10.054.
[16] T. C. Cheng et al., “Analysis of an intermediate-temperature proton-conducting SOFC hybrid
system,” Int. J. Green Energy, vol. 13, no. 15, pp. 1649–1656, 2016, doi:
10.1080/15435075.2016.1171229.
[17] Y. Huang and A. Turan, “Fuel sensitivity and parametric optimization of SOFC – GT hybrid
system operational characteristics,” Therm. Sci. Eng. Prog., vol. 14, p. 100407, 2019, doi:
10.1016/j.tsep.2019.100407.
[18] X. Wang, X. Lv, and Y. Weng, “Performance analysis of a biogas-fueled SOFC/GT hybrid
system integrated with anode-combustor exhaust gas Splitter loops,” Energy, vol. 197, p.
117213, 2020, doi: 10.1016/j.energy.2020.117213.
[19] Y. Liu, J. Han, and H. You, “Performance analysis of a CCHP system based on
SOFC/GT/CO2 cycle and ORC with LNG cold energy utilization,” Int. J. Hydrogen Energy,
vol. 44, no. 56, pp. 29700–29710, 2019, doi: 10.1016/j.ijhydene.2019.02.201.154
[20] B. Eisavi, A. Chitsaz, J. Hosseinpour, and F. Ranjbar, “Thermo-environmental and economic
comparison of three different aSPRangements of solid oxide fuel cell-gas turbine (SOFCGT) hybrid systems,” Energy Convers. Manag., vol. 168, no. January, pp. 343–356, 2018,
doi: 10.1016/j.enconman.2018.04.088.
[21] X. Lv, X. Ding, and Y. Weng, “Effect of fuel composition fluctuation on the safety
performance of an IT-SOFC/GT hybrid system,” Energy, vol. 174, pp. 45–53, 2019, doi:
10.1016/j.energy.2019.02.083.
[22] D. Oryshchyn, N. F. Harun, D. Tucker, K. M. Bryden, and L. Shadle, “Fuel utilization effects
on system efficiency in solid oxide fuel cell gas turbine hybrid systems,” Appl. Energy, vol.
228, no. July, pp. 1953–1965, 2018, doi: 10.1016/j.apenergy.2018.07.004.
[23] H. Zhao, Z. Zhao, and H. Wang, “Thermodynamic performance study of the CLHG/SOFC
combined cycle system with CO2 recovery,” Energy Convers. Manag., vol. 223, no. August,
p. 113319, 2020, doi: 10.1016/j.enconman.2020.113319.
[24] L. van Biert, K. Visser, and P. V. Aravind, “A comparison of steam reforming concepts in
solid oxide fuel cell systems,” Appl. Energy, vol. 264, no. November 2019, p. 114748, 2020,
doi: 10.1016/j.apenergy.2020.114748.
[25] B. Ghorbani, M. Mehrpooya, and K. Shokri, “Developing an integrated structure for
simultaneous generation of power and liquid CO2 using parabolic solar collectors, solid oxide
fuel cell, and post-combustion CO2 separation unit,” Appl. Therm. Eng., vol. 179, p. 115687,
2020, doi: 10.1016/j.applthermaleng.2020.115687.
[26] C. T. Cardenas De La Cruz, G. Herz, E. Reichelt, and M. Jahn, “Modeling of a Novel
Atmospheric SOFC/GT Hybrid Process and Comparison with State-of-the-Art SOFC
System Concepts,” Fuel Cells, vol. 20, no. 5, pp. 608–623, 2020, doi:
10.1002/fuce.201900142.
[27] H. Chen, C. Yang, N. Zhou, N. Farida Harun, D. Oryshchyn, and D. Tucker, “High
efficiencies with low fuel utilization and thermally integrated fuel reforming in a hybrid solid
oxide fuel cell gas turbine system,” Appl. Energy, vol. 272, no. January, p. 115160, 2020,
doi: 10.1016/j.apenergy.2020.115160.
[28] J. Pirkandi, H. Penhani, and A. Maroufi, “Thermodynamic analysis of the performance of a
hybrid system consisting of steam turbine, gas turbine and solid oxide fuel cell (SOFC-GT-155
ST),” Energy Convers. Manag., vol. 213, no. October 2019, p. 112816, 2020, doi:
10.1016/j.enconman.2020.112816.
[29] J. Chen, M. Liang, H. Zhang, and S. Weng, “Study on control strategy for a SOFC-GT hybrid
system with anode and cathode Splitter loops,” Int. J. Hydrogen Energy, vol. 42, no. 49, pp.
29422–29432, 2017, doi: 10.1016/j.ijhydene.2017.09.165.
[30] P. Kumar and O. Singh, “Thermoeconomic analysis of SOFC-GT-VARS-ORC combined
power and cooling system,” Int. J. Hydrogen Energy, vol. 44, no. 50, pp. 27575–27586, 2019,
doi: 10.1016/j.ijhydene.2019.08.198.
[31] Q. Meng, J. Han, L. Kong, H. Liu, T. Zhang, and Z. Yu, “Thermodynamic analysis of
combined power generation system based on SOFC/GT and transcritical carbon dioxide
cycle,” Int. J. Hydrogen Energy, vol. 42, no. 7, pp. 4673–4678, 2017, doi:
10.1016/j.ijhydene.2016.09.067.
[32] A. Behzadi Forough and R. Roshandel, “Design and operation optimization of an internal
reforming solid oxide fuel cell integrated system based on multi objective approach,” Appl.
Therm. Eng., vol. 114, pp. 561–572, 2017, doi: 10.1016/j.applthermaleng.2016.12.013.
[33] M. Ni, M. K. H. Leung, and D. Y. C. Leung, “Parametric study of solid oxide fuel cell
performance,” Energy Convers. Manag., vol. 48, no. 5, pp. 1525–1535, 2007, doi:
10.1016/j.enconman.2006.11.016.
[34] A. R. Potter and R. T. Baker, “Impedance studies on Pt|SrCe0.95Yb0.05O3|Pt under dried
and humidified air, argon and hydrogen,” Solid State Ionics, vol. 177, no. 19-25 SPEC. ISS.,
pp. 1917–1924, 2006, doi: 10.1016/j.ssi.2006.06.022.
[35] Ideris, A. Croiset, E. Pritzker, and M. Amin, A., “Direct-methane solid oxide fuel cell
(SOFC) with Ni-SDC anode-supported cell,” Int. J. Hydrogen Energy, vol. 42, no. 36, pp.
23118-23129, 2017, doi: 10.1016/j.ijhydene.2017.07.117.指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2021-10-12 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare