博碩士論文 107323033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.145.34.51
姓名 魏子凱(Tzu-Kai Wei)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 結合遺傳演算法與類神經網路之 分散式機械結構最佳化系統之研究
(The Research of Distributed Mechanical Structure Optimization System Integrating Genetic Algorithm and Neural Network)
相關論文
★ 微波化學強化碳化矽表面拋光之研究★ 智慧製造垂直系統整合之資產管理殼
★ 應用於智慧製造之網宇實體系統訓練資料異常檢知★ 應用深度學習與物聯網評估CNC加工時間
★ 混合視覺與光達感測的感知融合機器人定位系統★ 以資料分散式服務發展智慧產品與其系統之研究
★ 精微產品組裝的智能人機協作系統★ YOLOv7 模型於小物件檢測之改良與應用
★ 應用分治法於刀具壽命預測模型之研究★ 基於多通道 RSS 的可見光定位系統之設計與其訊號處理方法
★ 自動化工作站排程系統之設計與應用★ 基於區塊鏈之去中心化製造執行系統
★ 應用於專案排程之混合蟻群演算法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文整合結構最佳化方法及分散式運算系統,建立一機械結構最佳化系統。其系統突破以往於單一機台執行最佳化分析的模式,藉由運算資源的整合,加速最佳化方法的計算,達至提升資產使用率及降低產品開發時間成本之兩大目的。於結構最佳化方法上,結合至遺傳演算法及類神經網路模型,使最佳化方法擁有全域搜尋之能力,且能透過基於自適性規則的類神經網路模型,在模型運算準確度達至標準的條件下,取代原適應度評估方式,提升演算法的運算效率。在分散式運算系統上,使用聯網技術整合場域內的運算資源,建立一客戶端/伺服端的系統架構,當客戶端執行最佳化分析後,伺服端能夠將尚未分析的變數任務分配予閒置的資源,並可將設計變數及分析結果儲存於資料庫中,該系統能夠大幅度地降低最佳化分析的所需時間且擁有數據管理的能力。接著,本研究將提出結合遺傳演算法及類神經網路模型的分散式機械結構最佳化系統應用於非凸優化函數及數個結構最佳化分析案例上,進行系統的實作及驗證。由結構最佳化案例的結果可得,本文提出之結構最佳化系統相較於其他的最佳化方法能夠大幅度縮短最佳化分析的時間,且獲得較佳的分析結果,驗證至該機械結構最佳化系統之實用性。
摘要(英) This thesis purposes the mechanical structure optimization system integrating the structural optimization method and distributed computing system. The optimization system breaks through the traditional optimization method analyzing on single workstation and boosts the computing efficiency by resources integrating, further to approaches two goals which are raising the usage rate of resources and decreasing the time cost on developing product. On the one hand, structure optimization method integrates the genetic algorithm and artificial neural network model by adaptive principle purposed in this research. Artificial neural network can replace the original way of fitness evaluations in suitable timing and high accuracy condition depending on adaptive principle to keep the correct calculus direction for algorithm. On the other hand, distributed computing system is a client/server framework built by network technology. In this distributed computing system, client side can launch the optimization project and interact with database, including sending the variables and reading the result. Server side, which is composed of dispatch system and database, possesses the features of cost time falling dramatically and data management. Then, the mechanical structure optimization system is applied on non-convex optimization function and some structure optimization projects. Meanwhile, it is verified that can sharply reduce the times of optimization analysis and get the greatest solutions than the other algorithms.
關鍵字(中) ★ 結構最佳化設計
★ 遺傳演算法
★ 類神經網路
★ 分散式運算系統
關鍵字(英) ★ Structure Optimization Design
★ Genetic Algorithm
★ Neural Network
★ Distributed Computing System
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 x
符號表 xii
第一章、緒論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-2-1 最佳化方法 3
1-2-2 分散式結構分析系統 5
1-3 研究目的 9
1-4 論文架構 9
第二章、分散式結構最佳化系統 10
2-1 有限元素分析 10
2-2 類神經網路之簡介 11
2-3 遺傳演算法之簡介 13
2-4 遺傳演算法及類神經網路於最佳化方法之理論 16
2-4-1 遺傳演算法於結構最佳化設計之應用 16
2-4-2 遺傳演算法的限制條件處理 18
2-4-3 結合遺傳演算法與類神經網路之結構最佳化 20
2-5 分散式系統 21
2-5-1 分散式系統之組成 21
2-5-2 系統架構種類 23
2-5-3 分散式運算之相關技術 25
第三章、研究方法 29
3-1 結構最佳化方法 29
3-1-1 結合遺傳演算法與類神經網路之最佳化方法 29
3-1-2 自適性規則 32
3-2 分散式結構分析系統 36
3-2-1 用戶層 37
3-2-2 伺服層 37
3-2-3 運算層 40
3-2-4 相關程式與軟體 41
3-3 實驗設備 42
第四章、系統測試與討論 43
4-1 結合基於自適性之類神經網路模型的最佳化方法 45
4-1-1 類神經網路模型建立規則之比較 45
4-1-2 資料分割比例調整方法之比較 51
4-2 結合分散式分析系統的最佳化方法 56
4-2-1 總分析時間與各世代分析時間之比較 57
4-2-2 資源工作時間與閒置時間之比較 59
4-2-3 平均任務分析時間與資源分析任務平均時間之比較 62
4-3 結合類神經網路及分散式分析系統的最佳化方法 64
第五章、案例討論 67
5-1 Ackley函數 67
5-2 薄壁懸臂扭桿結構最佳化 70
5-3 十桿結構最佳化 73
5-4 夾爪結構最佳化 77
第六章、結論與未來展望 84
6-1 具體貢獻 84
6-2 未來展望 85
參考文獻 86

附錄A 分散式機械結構分析系統之程式部署及使用 90
A-1 程式部署 90
A-2 使用方法 90
A-2-1 PyAnsys之操作 90
A-2-2 PyMongo之操作 93
附錄B Grey Pro Resin 1L材料 95
B-1 產品製程及參數 95
B-2 機械性質試驗 96
參考文獻 [1] G. Vanderplaats, "Structural Design Optimization Status and Direction," Journal of Aircraft - J AIRCRAFT, vol. 36, pp. 11-20, 1999, doi: 10.2514/2.2440.
[2] G. D. Cheng, "Recent development in structural design and optimization," Acta Mechanica Sinica, vol. 26, pp. 807-823, 2010, doi: 10.1007/s10409-010-0395-7.
[3] G. N. Vanderplaats, "Thirty years of modern structural optimization," Advances in Engineering Software, vol. 16, no. 2, pp. 81-88, 1993, doi: https://doi.org/10.1016/0965-9978(93)90052-U.
[4] P. Hajela, "Genetic search - An approach to the nonconvex optimization problem," AIAA Journal, vol. 28, pp. 1205-1210, 1990.
[5] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press, 1992.
[6] W. M. Jenkins, "Towards structural optimization via the genetic algorithm," Computers & Structures, vol. 40, no. 5, pp. 1321-1327, 1991, doi: https://doi.org/10.1016/0045-7949(91)90402-8.
[7] X. Cao, Y. Sugiyama, and Y. Mitsui, "Application of artificial neural networks to load identification," Computers & Structures, vol. 69, no. 1, pp. 63-78, 1998, doi: https://doi.org/10.1016/S0045-7949(98)00085-6.
[8] J. Peng and K. H. Law, "Building finite element analysis programs in distributed services environment," Computers & Structures, vol. 82, no. 22, pp. 1813-1833, 2004, doi: https://doi.org/10.1016/j.compstruc.2004.03.056.
[9] J. Cooper and C. Hinde, "Improving Genetic Algorithms’ Efficiency Using Intelligent Fitness Functions," in Developments in Applied Artificial Intelligence, Berlin, Heidelberg, P. W. H. Chung, C. Hinde, and M. Ali, Eds., 2003// 2003: Springer Berlin Heidelberg, pp. 636-643.

[10] L. Wei, T. Tang, X. Xie, and W. Shen, "Truss optimization on shape and sizing with frequency constraints based on parallel genetic algorithm," Structural and Multidisciplinary Optimization, vol. 43, no. 5, pp. 665-682, 2011, doi: 10.1007/s00158-010-0600-0.
[11] O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, 6 ed. Elsevier Science, 2005.
[12] Y. Jin, "A comprehensive survey of fitness approximation in evolutionary computation," Soft Computing, vol. 9, no. 1, pp. 3-12, 2005, doi: 10.1007/s00500-003-0328-5.
[13] T. Tamura, M. Ohsaki, and J. Takagi, "Machine learning for combinatorial optimization of brace placement of steel frames," Japan Architectural Review, vol. 1, 2018, doi: 10.1002/2475-8876.12059.
[14] Z. Aksöz and C. Preisinger, "An Interactive Structural Optimization of Space Frame Structures Using Machine Learning," in Impact: Design With All Senses, Cham, C. Gengnagel, O. Baverel, J. Burry, M. Ramsgaard Thomsen, and S. Weinzierl, Eds., 2020// 2020: Springer International Publishing, pp. 18-31.
[15] 黎業飛、邱清盈, 馮培恩, and 武建偉, "基於Internet的有限元遠程分析技術研究, 計算機集成製造系統, vol. 9, no. 12, pp. 1132-1135, 2003. [Online]. Available:https://www.AiritiLibrary.com/Publication/Index/10065911-200312-9-12-1132-1135-a.
[16] H.-M. Chen and Y.-C. Lin, "Web-FEM: An internet-based finite-element analysis framework with 3D graphics and parallel computing environment," Advances in Engineering Software, vol. 39, no. 1, pp. 55-68, 2008, doi: https://doi.org/10.1016/j.advengsoft.2006.12.001.
[17] X.-p. Chen and R.-f. Hu, "Web services based mechatronics product remote finite element analysis techniques," in 2010 International Conference On Computer Design and Applications, 2010, vol. 4, pp. V4-168-V4-172, doi: 10.1109/ICCDA.2010.5541425.
[18] J. Calvo, J. Gracia, and E. Bayo, "Robust design to optimize client–server bi-directional communication for structural analysis web applications or services," Advances in Engineering Software, vol. 112, pp. 136-146, 2017, doi: https://doi.org/10.1016/j.advengsoft.2017.04.010.
[19] P. Kohnke. ANSYS. (2009). Theory Reference for Mechanical APDL and Mechanical Applications.
[20] 蘇木春、張孝德,機器學習:類神經網路、模糊系統以及基因演算法則(修訂二版),三版,全華科技,臺北市, 2004。
[21] N. Ali, K. Behdinan, and Z. Fawaz, "Applicability and viability of a GA based finite element analysis architecture for structural design optimization," Computers & Structures, vol. 81, no. 22, pp. 2259-2271, 2003, doi: https://doi.org/10.1016/S0045-7949(03)00255-4.
[22] 柯星竹,「應用遺傳演算法與類神經網路於結構最佳化設計之研究」,淡江大學航空太空工程學系碩士班,碩士論文,2006。
[23] 范栩,「結構最佳化遺傳演算之類神經網路近似法」,國立臺灣大學機械工程研究所,碩士論文, 2007。
[24] M. Gen and R. Cheng, "A survey of penalty techniques in genetic algorithms," in Proceedings of IEEE International Conference on Evolutionary Computation, 1996, pp. 804-809, doi: 10.1109/ICEC.1996.542704.
[25] A. Smith, D. Coit, T. Bäck, D. Fogel, and Z. Michalewicz, "Penalty Functions," 1998.
[26] D. W. Coit and A. E. Smith, "Penalty guided genetic search for reliability design optimization," Computers & Industrial Engineering, vol. 30, no. 4, pp. 895-904, 1996, doi: https://doi.org/10.1016/0360-8352(96)00040-X.
[27] G. Coulouris, Distributed systems : concepts and design. Boston: Addison-Wesley, 2012.
[28] R. Buyya, C. Vecchiola, and S. T. Selvi, Mastering Cloud Computing: Foundations and Applications Programming. Morgan Kaufmann Publishers Inc., 2013.
[29] Y. Zhao, "Decentralized Object Location and Routing: A New Networking Paradigm," Doctor of Philosophy, Computer Science in the GRADUATE DIVISION, UNIVERSITY OF CALIFORNIA, BERKELEY, 2004.
[30] J. Wu and T. Wang, "Research and Application of SOA and Cloud Computing Model," 2014 Enterprise Systems Conference, pp. 294-299, 2014.
[31] ResearchGate. (2015). Is there any reference/ methods/rules to understand about the minimum number of observations needed for ANN based data prediction?. Available: https://www.researchgate.net/post/Is_there_any_reference_methods_rules_to_understand_about_the_minimum_number_of_observations_needed_for_ANN_based_data_prediction
[32] U. Kirsch, Structural optimization: fundamentals and applications. Springer Science & Business Media, 2012.
[33] 鍾添東,「多重進化遺傳演算法於結構最佳化設計之應用」, 臺北市:國立臺灣大學機械工程學系暨研究所,2002。Accessed: 2021-09-01. [Online]. Available: http://ntur.lib.ntu.edu.tw/handle/246246/15768
[34] R. N. Asl, M. Aslani, and M. S. Panahi, "Sizing optimization of truss structures using a hybridized genetic algorithm," arXiv preprint arXiv:1306.1454, 2013.
[35] C. A. C. Coello and E. M. Montes, "Constraint-handling in genetic algorithms through the use of dominance-based tournament selection," Advanced Engineering Informatics, vol. 16, no. 3, pp. 193-203, 2002.
指導教授 林錦德(Chin-Te Lin) 審核日期 2021-10-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明