博碩士論文 107323062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.119.142.210
姓名 郭芸廷(YUN-TING KUO)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 混合山型紋角度之板式熱交換器性能比較
(Performance evaluation of mixed chevron angle plate heat exchanger)
相關論文
★ 冷卻水溫度與冰水溫度對離心式冰水主機性能影響之實驗分析★ 不同結構與幾何形狀對熱管性能之影響
★ HFC-134a與HFO-1234yf 在板式熱交換器中流動沸騰之性能比較★ 油冷卻器熱傳與壓降性能實驗分析
★ 水對冷媒R22在板式熱交換器內之性能測試分析★ 水對水在不同板片型式之板式熱交換器性能測試分析與比較
★ 油冷卻器性能測試分析與比較★ 空調機用水簾式暨光觸媒空氣清淨機 研製及測試
★ 水對空氣在板式熱交換器之性能測試分析★ 板片入出口及入出口管路壓降估計對板式熱交換器壓降性能影響分析
★ 微熱交換器之設計與性能測試★ 板式熱交換器之入出口壓降實驗分析
★ 液體冷卻系統中之微熱交換器性能分析與改良★ 直接模擬蒙地卡羅法於高低速流場之模擬
★ 液體微熱交換器之熱傳增強研究★ 冷媒R22在板式熱交換器內之凝結熱傳及壓降性能實驗分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 山型紋板式熱交換器已廣泛應用在家用及工業用途,本研究使用的是30+65o混和山型紋板式熱交換器及其對照組65o板式熱交換器,以單相水為流體、溫度30oC、從Re=300到1000的j及f利用Webb的PEC評估法中的VG-1比較兩種測試段之間的整體性能優劣,發現65o板式需要的熱傳面積比約為混和角度板式的0.6倍,代表65o板式的性能高了混和角度板式約1.67倍,且這樣的差異幾乎不隨流量改變而改變。
而在流動沸騰的實驗中,R134a的山型紋角度65o測試段和混和角度測試段的面積比值約為1到1.2倍、R1234yf的面積比則為1.2到1.3倍,代表在流動沸騰的兩相實驗中30+65o板式表現較佳,可能是因為不同流譜及流體流動方式下造成主要影響的冷媒性質不同,進而讓兩種測試段及兩種冷媒之間的熱傳性質及壓降比值不同,讓得出的熱傳面積比會有約10-20%的差異。在兩相冷媒兩相冷凝實驗時,R134a和R1234yf對應到的熱傳面積比則是0.7-1倍及0.6-0.9倍,兩種冷媒間的差異也約是10%,也可以用同樣的方式解釋,因為不同熱傳機制及流譜的影響,而使得30+65o板式的性能在冷凝實驗中略低於65o板式。
總體而言, 30+65o板片在流動沸騰時具備優勢,在冷凝時性能勉強和65o板式的性能持平,但是在單相水的實驗中完全不具有優勢。而冷媒性質造成的差異,導致30+65o板片在冷凝實驗中使用R134a會有較佳的性能表現,在流動沸騰中反而使用R1234yf會讓混和角度的板式熱交換器有性能優勢。
摘要(英) Chevron plate heat exchangers have been widely used in domestic and industrial applications. In this study, PHEs with 65o and 30+65o chevron angle were used as test sections. The experiment condition was temperature at 30oC and Re number ranging from 300-1000 when using single phase water as working fluid. After conducting experiment, the j and f of different chevron angle PHE were then evaluated by using Webb′s VG-1 PEC method. The results indicated that PHE with 65o angle required only 0.6 times of heat transfer area comparing to mix angle PHE when performing same heat transfer capability.
Yet in flow boiling experiment, the heat transfer area ratio of PHE with angle 65o and the mixed angle PHE was about 1 to 1.2 times using R134a, and the area ratio of R1234yf was 1.2 to 1.3 times, which implied that mixed angle PHE has better heat transfer performance. It could be caused by the difference between refrigerant thermal properties, and the differences of flow patterns, heat transfer mechanisms, and the flow conditions between 65o angle PHE and mixed angle PHE. The interaction between these parameters result in 10-20% higher heat transfer area ratio of R1234yf comparing to R134a. As for condensation experiment, the consequences were similar with those of flow boiling, but because of heat transfer mechanism difference, the heat transfer area ratio corresponding to R134a and R1234yf is 0.7-1 times and 0.6-0.9 times. The difference between the two refrigerants is about 10%.
In general, mixed angle PHE had advantages in flow boiling, barely equal to that of the 65o angle PHE when condensing, but no advantage in single-phase water experiments. The refrigerant property differences caused R1234yf was preferred when flow boiling while R134a was preferred when condensation.
關鍵字(中) ★ 混合山型紋角度熱交換器
★ R1234yf
★ R134a
★ 流動沸騰
★ 冷凝
關鍵字(英) ★ mixed chevron plate heat exchanger
★ R1234yf
★ R134a
★ flow boiling
★ condensation
論文目次 目錄
摘要 i
ABSTRACT ii
目錄 iii
圖目錄 v
表目錄 ix
符號說明 x
一、緒論 1
二、文獻回顧 4
2.1 單相流體在不同山型紋角度中的現象 4
2.2 不同山型紋角度在板式熱交換器中的流動沸騰現象 7
2.3 不同山型紋角度在板式熱交換器中的冷凝現象 10
2.4 流道中分佈不均勻的現象 11
2.5 性能比較方法 16
2.5.1 Goodness factor comparison 16
2.5.2 Webb的PEC 17
2.6 研究目的 22
三、實驗方法 23
3.1 實驗系統 23
3.1.1 測試段 23
3.1.2 系統架設 24
3.1.3 系統設備及誤差分析 25
3.2 修正威爾遜圖解法 (Modified Wilson Plot) 32
3.3 壓降數據換算 35
四、實驗結果與性能比較 36
4.1 單相實驗 36
4.1.1 單相結果 36
4.1.2 單相數據性能比較 38
4.2 兩相流動沸騰實驗 39
4.2.1 R134a流動沸騰實驗結果 39
4.2.2 R134a流動沸騰性能比較 44
4.2.3 R1234yf流動沸騰結果及比較 48
4.3 兩相冷凝實驗 58
4.3.1 R134a冷凝實驗結果及比較 58
4.3.2 R1234yf冷凝結果及比較 64
六、結論 74
參考文獻 75
參考文獻 [1] B. Sundén, and R. M. Manglik, "Plate heat exchangers: design, applications and performance". Boston: Wit Press, 2007.
[2] A. Laval. "How gasketed plate heat exchangers work." Retrieved from https://www.alfalaval.com/microsites/gphe/tools/how-gphes-work/.
[3] R. K. Shah, and W. W. Focke, "Plate Heat Exchangers and Their Design Theory", in Heat Transfer Equipment Design, R. K. Shah, E. C. Subbarao and R. A. Mashelkar (Eds.), Washington: Hemisphere, 1988, pp. 227-254.
[4] W. W. Focke, J. Zachariades, and I. Olivier, "The effect of the corrugation inclination angle on the thermohydraulic performance of plate heat exchangers", International Journal of Heat and Mass Transfer, Vol 28, pp. 1469-1479, 1985.
[5] R. Heavner, H. Kumar, and A. Wanniarachchi, "Performance of an industrial plate heat exchanger: effect of chevron angle", American Institute of Chemical Engineers Symposium series, Vol 89, pp. 262-267, 1993.
[6] A. Muley, and R. Manglik, "Experimental study of turbulent flow heat transfer and pressure drop in a plate heat exchanger with chevron plates", International Journal of Heat and Mass Transfer Feb 1999, Vol 121, pp. 110-117, 1999.
[7] W. W. Focke, and P. G. Knibbe, "Flow visualization in parallel-plate ducts with corrugated walls", Journal of Fluid Mechanics, Vol 165, pp. 73-77, 1986.
[8] D.-H. Han, K.-J. Lee, and Y.-H. Kim, "Experiments on the characteristics of evaporation of R410A in brazed plate heat exchangers with different geometric configurations", Applied Thermal Engineering, Vol 23, pp. 1209-1225, 2003.
[9] E. Djordjevic, and S. Kabelac, "Flow boiling of R134a and ammonia in a plate heat exchanger", International Journal of Heat and Mass Transfer, Vol 51, pp. 6235-6242, 2008.
[10] M. S. Khan, T. S. Khan, M.-C. Chyu, and Z. H. Ayub, "Evaporation heat transfer and pressure drop of ammonia in a mixed configuration chevron plate heat exchanger", International Journal of Refrigeration, Vol 41, pp. 92-102, 2014.
[11] D. Kim, D. Lee, D. S. Jang, Y. Jeon, and Y. Kim, "Comparative evaluation of flow boiling heat transfer characteristics of R-1234ze (E) and R-134a in plate heat exchangers with different Chevron angles", Applied Thermal Engineering, Vol 132, pp. 719-729, 2018.
[12] D.-H. Han, K.-J. Lee, and Y.-H. Kim, "The characteristics of condensation in brazed plate heat exchangers with different chevron angles", JOURNAL-KOREAN PHYSICAL SOCIETY, Vol 43, pp. 66-73, 2003.
[13] N. Hayes, A. Jokar, and Z. H. Ayub, "Study of carbon dioxide condensation in chevron plate exchangers; heat transfer analysis", International Journal of Heat and Mass Transfer, Vol 54, pp. 1121-1131, 2011.
[14] N. Hayes, A. Jokar, and Z. H. Ayub, "Study of carbon dioxide condensation in chevron plate exchangers; pressure drop analysis", International Journal of Heat and Mass Transfer, Vol 55, pp. 2916-2925, 2012.
[15] K. Miyata, Y. Yamasaki, K. Kurose, Y. Hamamoto, H. Mori, and S. Umezawa, "Cooling and condensation heat transfer and pressure drop of a refrigerant at high pressures in a chevron-type plate heat exchanger with high chevron angle", Mechanical Engineering Journal, Vol pp. 20-00107, 2020.
[16] P. Vlasogiannis, G. Karagiannis, P. Argyropoulos, and V. Bontozoglou, "Air–water two-phase flow and heat transfer in a plate heat exchanger", International Journal of Multiphase Flow, Vol 28, pp. 757-772, 2002.
[17] H. Asano, N. Takenaka, and T. Fujii, "Flow characteristics of gas–liquid two-phase flow in plate heat exchanger:(Visualization and void fraction measurement by neutron radiography)", Experimental Thermal and Fluid Science, Vol 28, pp. 223-230, 2004.
[18] H. Asano, N. Takenaka, T. Wakabayashi, and T. Fujii, "Visualization and void fraction distribution of downward gas–liquid two-phase flow in a plate heat exchanger by neutron radiography", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol 542, pp. 154-160, 2005.
[19] A. Lozano, F. Barreras, N. Fueyo, and S. Santodomingo, "The flow in an oil/water plate heat exchanger for the automotive industry", Applied Thermal Engineering, Vol 28, pp. 1109-1117, 2008.
[20] R. K. Shah, and A. L. London, "Disscussion- An overview for the designer and the applied mathematician", in Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data, T. F. Irvine and J. P. Hartnett (Eds.), London: Academic press, 1978, pp. 393-405.
[21] W. W. Focke, "Turbulent convective transfer in plate heat exchangers", International communications in heat and mass transfer, Vol 10, pp. 201-210, 1983.
[22] R. L. Webb, and N.-H. Kim, "Performance evaluation criteria for single-phase flow", in Principles of Enhanced heat transfer New York: CRC Press, 2005, pp. 55-74.
[23] R. K. Shah, and D. P. Sekulic, "Fundamentals of heat exchanger design". Hoboken, New Jersey: John Wiley & Sons, 2003.
[24] D. Briggs, and E. H. Young. "Modified Wilson plot techniques for obtaining heat transfer correlations for shell and tube heat exchangers", Chemical Engineering Progress Symposium Series, pp. 35-45.1969
[25] R. K. Shah. "Assessment of modified Wilson plot techniques for obtaining heat exchanger design data", International Heat Transfer Conference Digital Library, pp. 51-56.1990
[26] 陳冠廷, "Experimental study on flow boiling and condensation heat transfer of refrigerants R-134a and R-1234yf in plate heat exchangers", 國立中央大學, 碩士, 2019年6月
[27] V. Solotych, D. Lee, J. Kim, R. L. Amalfi, and J. R. Thome, "Boiling heat transfer and two-phase pressure drops within compact plate heat exchangers: Experiments and flow visualizations", International Journal of Heat and Mass Transfer, Vol 94, pp. 239-253, 2016.
指導教授 楊建裕(Chien-Yuh Yang) 審核日期 2021-10-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明