博碩士論文 107323072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:117 、訪客IP:18.224.30.113
姓名 鄭柏暐(Po-Wei Cheng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 基於消費級深度相機之器械追蹤系統開發
(Development of Instrument Tracking System Based on Consumer-grade Depth Camera)
相關論文
★ 雙光子光致聚合微製造系統之研發★ 雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究
★ 椎弓根螺釘定位演算法及導引夾治具自動化設計流程開發★ 雙光子聚合微製造技術以能量均勻橢圓體為基之曝光時間最佳化研究
★ 雙光子光致聚合微製造以弦高誤差為基之切層演算法★ 雙光子光致聚合微製造技術以螺旋線雷射掃描路徑增強微結構強度研究
★ 雙光子聚合微製造技術之三維結構 製造品質改進研究★ 利用二維多重圖像建構三維三角網格模型的生成與品質改進
★ 組織工程用冷凍成型製造系統 之自動化製作流程開發★ 自動相機校正與二維影像輪廓萃取研究
★ 基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究★ 冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究
★ 基於二維影像輪廓重建三維模型技術之多視角相機群組空間座標系統整合★ 應用於大型物體三維模型重建之多重二維校正板相機校正流程開發
★ 組織工程用冷凍成型積層製造之固態水支撐結構生成研究★ 聚醚醚酮之積層製造系統開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 手術導航系統現今已廣泛的使用在臨床上,可協助醫師更安全、更精確地完成手術,受到許多醫師及患者的青睞。由於手術導航系統需要精度較高的器材以及許多相關技術的整合,以保持其準確性與穩定性,因此通常整套系統要價不菲。若能將其中的硬體設備以其他較低廉的方案取代,便能大幅地降低其成本。
深度相機相較於傳統相機,除了可得知環境的影像之外,還可以直接獲得視野內物體的深度,如今已廣泛的應用在機器視覺領域,可搭載在自走車、機器手臂上等,許多廠商也推出消費級的深度相機,使得深度相機的使用門檻與成本降低了不少。而深度相機通常用於感測周遭事物的距離,因此若能使用深度相機取代導航系統中造價昂貴的感測器,用來得知目標物的位置,便能使成本大幅度的降低。
本研究之目的是以消費級的深度相機為基礎搭建一套器械追蹤系統。本研究結合彩色影像、紅外線影像、深度資訊等,透過影像處理與演算法來找出目標物的位置。本研究將深度相機與目標物固定在滑軌上,使滑軌移動特定距離,測量本研究之誤差。實驗包含測量單一球體球心的誤差、動態參考框架距離誤差和角度誤差,而各個項目又包含在不同距離所測得的誤差。擬和球心的誤差可在3mm以內,而動態參考框架的幾何相似度可達98%以上,角度誤差平均為2.74度。
摘要(英) Surgical navigation system is now widely used in clinics. They can assist doctors in completing operations more safely and accurately. It is widely accepted by physicians and patients nowadays. Surgical navigation system requires high-precision equipment and the integration of many related technologies to maintain its accuracy and stability, so the entire system is usually expensive. Compared with traditional camera, depth camera can not only acquire the color image of the environment, but also obtain the depth of objects in the field of view directly. Nowadays, depth camera has been widely used in the field of machine vision. It can be mounted on automatic vehicles, robotic arms, etc. Many manufacturers have also introduced consumer-grade depth cameras, which lower the threshold and cost of depth cameras. Depth cameras are usually used to sense the distance of things around. Therefore, if the depth camera can be used to replace the expensive sensors in the navigation system, the cost of the system can be greatly reduced.
The purpose of this research is to build a spatial positioning system based on consumer-grade depth cameras. This research combines color images, infrared images, depth information, etc. to find the location of the target through image processing and algorithms. In this research, the depth camera and the target are fixed on the slide rail, so we can make the target move a specific distance and measure the error of the experiment. The experiment includes measuring the error of the sphere center, the distance error of the dynamic reference frame, and the angle error of the dynamic reference frame, and each item includes the error measured at different distances. The minimum error of the fitting sphere can be within 3 mm, and the geometric similarity of the dynamic reference frame can reach more than 98%, the angular error is 2.74 degree on average.
關鍵字(中) ★ 深度相機
★ 手術導航系統
★ 定位系統
★ RealSense
★ 點雲
關鍵字(英) ★ Depth camera
★ Surgical navigation system
★ Location system
★ RealSense
★ Point cloud
論文目次 摘要 I
Abstract II
誌謝 III
圖目錄 VI
表目錄 IX
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 文獻回顧 3
1-4 研究目的 10
1-5 論文架構 11
第二章 理論說明 12
2-1 測距原理 12
2-2 手術導航系統架構 16
2-3 影像處理介紹 18
2-4 連通元件標記 19
2-5 球心座標擬合 24
2-6 公垂線中點 27
第三章 研究方法 29
3-1 系統架構 29
3-2 設備介紹 30
3-3 RealSense™ SDK 2.0介紹 34
3-4 定位流程 35
3-5 影像處理和追蹤的演算法 37
3-6 實驗方法 46
3-7 深度相機之座標軸 47
3-8 誤差的計算方法 49
第四章 實驗結果與討論 50
4-1 DRF辨識成果 50
4-2 反光球水平位移之誤差 51
4-3 反光球在不同深度之誤差分析 56
4-4 DRF角度誤差 57
第五章 結論與未來展望 58
5-1 結論 58
5-2 未來展望 58
參考文獻 60
參考文獻 [1] Klaus Ebmeier, K Giest and Rolf Kalff, “Intraoperative Computerized Tomography for Improved Accuracy of Spinal Navigation in Pedicle Screw Placement of the Thoracic Spine”. Intraoperative Imaging in Neurosurgery, Vol. 85, pp.105-113, 2003.
[2] Guo-Yan Zheng, Jens Kowal, Miguel A. Gonzalez Ballestera, Marco Caversaccio and Lutz-Peter Nolte, “Registration Techniques For Computer Navigation”, Current Orthopaedics, Vol. 21 (3), pp.170-179, June 2007.
[3] 張志儒,「電腦輔助系統用於脊椎後融合骨釘植入手術之臨床應用評估」,國立中央大學,碩士論文,民國105年。
[4] David Hernandez, Roja Garimella, Adam E M Eltorai and Alan H Daniels, “Computer-Assisted Orthopaedic Surgery”, Orthopaedic Surgery, Vol. 9, pp. 152-158, June 2017.
[5] Vivek Singh, John Realyvasquez, Trevor Simcox, Joshua C. Rozell, Ran Schwarzkopf and Roy Davidovitch, “Robotics Versus Navigation Versus Conventional Total Hip Arthroplasty: Does the Use of Technology Yield Superior Outcomes?”, Journal of Arthroplasty, Vol. 36 (8), pp.2801-2807, August 2021.
[6] Sang-Min Kim, Youn-Soo Park, Chul-Won Ha, Seung-Jae Lim and Young-Wan Moon, “Robot-Assisted Implantation Improves the Precision of Component Position in Minimally Invasive TKA”, Orthopedics, Vol. 35 (9), pp. E1334-E1339, September 2012.
[7] Jens Decking, Christoph Theis, Tobias Achenbach, Edgar Roth, Bernhard and Nafe, Anke Eckardt, “Robotic Total Knee Arthroplasty the Accuracy of CT-Based Component Placement”, Acta Orthopaedica Scandinavica, Vol. 75 (5), pp. 573-579, October 2004.
[8] Hong-Yu Liu, Wei-Hung Su, Karl Reichard and Shi-Zhuo Yin, “Calibration-Based Phase-Shifting Projected Fringe Profilometry for Accurate Absolute 3D Surface Profile Measurement”, Optic Communications, Vol.216 (1-3), pp.65-80, February 2003.
[9] Monica Carfagni, Rocco Furferi, Lapo Governi, Chiara Santarelli, Michaela Servi, Francesca Uccheddu and Yary Volpe, “Metrological and Critical Characterization of the Intel D415 Stereo Depth Camera”, Sensors, Vol. 19 (3), No. 489, January 2019.
[10] Feng-Quan Zhang, Ting-Shen Lei, Jinhong Li, Xing-Quan Cai, Xu-Qiang Shao, Jian Chang and Feng Tian, “Real-time Calibration and Registration Method for Indoor Scene with Joint Depth and Color Camera”, International Journal of Pattern Recognition and Artificial Intelligence, Vol. 32 (7), No. 7, July 2018.
[11] Chong Wang, Zhong Liu and Shing-Chow Chan, “Superpixel-Based Hand Gesture Recognition with Kinect Depth Camera”, IEEE Transactions on Multimedia, Vol. 17 (1), No. 1, pp.29-39, January 2015.
[12] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim, Andrew J. Davison, Pushmeet Kohli, Jamie Shotton, Steve Hodges and Andrew Fitzgibbon, “Kinect Fusion: Real-Time Dense Surface Mapping and Tracking”, 2011 10th IEEE International Symposium on Mixed and Augmented Reality, October 2011.
[13] Jing Tong, Jin Zhou, Li Gang Liu, Zhi Geng Pan and Hao Yan, “Scanning 3D Full Human Bodies Using Kinects”, IEEE Transactions on Visualization and Computer Graphics, Vol. 18 (4), pp.643-650, April 2012.
[14] Jamie Shotton, Toby Sharp, Alex Kipman, Andrew Fitzgibbon, Mark Finocchio, Andrew Blake, Mat Cook and Richard Moore, “Real-Time Human Pose Recognition in Parts from Single Depth Images”, Communications of the ACM, Vol. 56 (1), pp. 116-124, January 2013.
[15] John Oyekan, Axel Fischer, Windo Hutabarat, Christopher Turner and Ashutosh Tiwari, “Utilizing Low Cost RGB-D Cameras to Track the Real Time Progress of a Manual Assembly Sequence”, Assembly Automation, Vol.40 (6), pp.925-939, November 2020.
[16] Mateu-Mateus Marc, Guede-Fernandez Federico, Garcia-Gonzalez Miguel A., Ramos-Castro Juan and Fernandez-Chimeno Mireya, “Non-Contact Infrared-Depth Camera-Based Method for Respiratory Rhythm Measurement While Driving”, IEEE Access, Vol. 7, pp. 152522-152532, October 2019.
[17] Cristian Vilar, Silvia Krug and Mattias O’Nils, “Realworld 3D Object Recognition Using a 3D Extension of the HOG Descriptor and a Depth Camera”, Sensors, Vol. 21 (3), No. 910, February 2021.
[18] Long-Yu Zhang, Hao Xia and Yan-You Qiao, “Texture Synthesis Repair of RealSense D435i Depth Images with Object-Oriented RGB Image Segmentation”, Sensors, Vol. 20 (23), No. 6725, December 2020.
[19] Kai-Lun Yang, Kai-Wei Wang, Wei-Jian Hu and Jian Bai, “Expanding the Detection of Traversable Area with RealSense for the Visually Impaired”, Sensors, Vol. 16 (11), No. 1954, November 2016.
[20] Ji-Min Cho, Soon-Yong Park and Sung-Il Chien, “Hole-Filling of RealSense Depth Images Using a Color Edge Map”, IEEE Access, Vol. 8, pp. 53901-53914, March 2020.
[21] Yue-Hua Li, Jing-Bo Zhou, Qing-Wei Mao, Jian-Gyan Jin and Feng-Shan Huang, “Line Structured Light 3D Sensing With Synchronous Color Mapping”, IEEE Sensors Journal, Vol. 20 (17), pp. 9796-9805, September 2020.
[22] Perng-Fei Luo, Yuh-Jin Chao, and Michael A. Sutton, “Application of Stereo Vision to Three-Dimensional Deformation Analyses in Fracture Experiments”, Optical Engineering, Vol. 33 (3), pp. 981-990, March 1994.
[23] Qin-Yong Lin, Rong-Qian Yang, Zhe-Si Zhang, Ken Cai, Zhi-Gang Wang, Mei-Ping Huang, Jin-Hua Huang, Yin-Wei Zhan and Jian Zhuang, “Robust Stereo-Match Algorithm for Infrared Markers in Image-Guided Optical Tracking System”, IEEE Access Vol. 6, pp. 52421-52433, October 2018.
[24] Soon-Yong Park, Murali Subbarao, “A Multiview 3D Modeling System Based on Stereo Vision Techniques”, Machine Vision and Applications, Vol. 16 (3), pp. 148-156, May 2005.
[25] Yue-Hua Li, Jing-Bo Zhou, Qing-Wei Mao, Jian-Gyan Jin and Feng-Shan Huang, “Line Structured Light 3D Sensing With Synchronous Color Mapping”, IEEE Sensors Journal, Vol. 20 (17), pp. 9796-9805, September 2020.
[26] Andreas Velten, Thomas Willwacher, Otkrist Gupta, Ashok Veeraraghavan, Moungi G. Bawendi, and Ramesh Raskar, “Recovering Three-Dimensional Shape Around a Corner Using Ultrafast Time-of-Flight Imaging”, Nature Communications, Vol. 3, No.745, March 2012.
[27] Guo-Yan Zheng, Jens Kowal, Miguel A. Gonzalez Ballestera, Marco Caversaccio and Lutz-Peter Nolte, “Registration Techniques For Computer Navigation”, Current Orthopaedics, Vol. 21 (3), pp.170-179, June 2007.
[28] David Hernandez, Roja Garimella, Adam E M Eltorai and Alan H Daniels, “Computer-Assisted Orthopaedic Surgery”, Orthopaedic Surgery, Vol. 9, pp. 152-158, June 2017.
[29] Xing-Guang Duan, Liang Gao, Yong-Gui Wang, Jian-Xi Li, Hao-Yuan Li and Yan-Jun Guo1, "Modelling and Experiment Based on a Navigation System for a Cranio-Maxillofacial Surgical Robot", Journal of Healthcare Engineering, Vol. 2018,No. 4670852, December 2018.
[30] 吳成柯等,數位影像處理,儒林圖書,臺北,1995。
[31] Wilhelm Burger and Mark J. Burge, 2008 Digital image processing: an algorithmic introduction using Java, 1st edit., Springer, New York, 2008.
[32] Michael Doube, “Multithreaded Two-Pass Connected Components Labelling and Particle Analysis in ImageJ”, Royal Society Open Science, Vol. 8 (3), No. 201784, March 20
[33] Intel RealSense Team, Intel RealSense D400 Series Product Family Datasheet, Revision 010, February 2021.
[34] Northern Digital Inc., Polaris Spectra Tool Kit Guide, Revision 1, August 2006.
指導教授 廖昭仰(Chao-Yaug Liao) 審核日期 2021-10-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明