參考文獻 |
[1] Gao, G., Liu, Y.-S., Wang, M., Gu, M., & Yong, J.-H. (2015). A query expansion method for retrieving online BIM resources based on Industry Foundation Classes. Automation in Construction, 56, 14-25. https://doi.org/https://doi.org/10.1016/j.autcon.2015.04.006
[2]Wu, S., Shen, Q., Deng, Y., & Cheng, J. (2019). Natural-language-based intelligent retrieval engine for BIM object database. Computers in Industry, 108, 73-88. https://doi.org/https://doi.org/10.1016/j.compind.2019.02.016
[3]Li, N., Li, Q., Liu, Y.-S., Lu, W., & Wang, W. (2020). BIMSeek++: Retrieving BIM components using similarity measurement of attributes. Computers in Industry, 116, 103186. https://doi.org/https://doi.org/10.1016/j.compind.2020.103186
[4]Ogada, K., Mwangi, W., & Cheruiyot, W. (2015). N-gram Based Text Categorization Method for Improved Data Mining. Journal of Information Engineering and Applications, 5, 35-43.
[5]Gao, X., & Zhu, N. (2013). Hidden Markov Model and its Application in Natural Language Processing. Information Technology Journal, 12, 4256-4261. https://doi.org/10.3923/itj.2013.4256.4261
[6]Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. (2003). A neural probabilistic language model. J. Mach. Learn. Res., 3(null), 1137–1155.
[7]Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
[8]Pennington, J., Socher, R., & Manning, C. (2014, oct). GloVe: Global Vectors for Word Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar.
[9] Ilić, S., Marrese-Taylor, E., Balazs, J. A., & Matsuo, Y. (2018). Deep
contextualized word representations for detecting sarcasm and irony. arXiv
preprint arXiv:1809.09795.
[10] Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training.
[11] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
[12] Lin, S. (2003). 基於自然語言處理技術的研究主題抽取與分析 (Extraction and Analysis of Research Topics Based on NLP Technologies) [In Chinese]. ROCLING.
[13]黃昱仁。「語料庫語言學分析於英語教學之研究:小說傲慢與偏見中之高頻語法結構及其序列之分析」。碩士論文,臺北市立大學英語教學系,2015。https://hdl.handle.net/11296/5wy3dy 。
[14]許尤芬(2012)。中文多義詞「發」之語義探討:以語料庫為本。臺北市立教育大學華語文教學碩士學位學程碩士論文,臺北市。 (取自https://hdl.handle.net/11296/8tug5n )
[15]邱筱涵(2016)。法律翻譯語料庫建置及分析。國立臺灣大學翻譯碩士學位學程碩士論文,台北市。 (取自https://hdl.handle.net/11296/mjsp68 )
[16]林素玲(2020)。醫療語境及其相關術語的語料庫建置過程研究: 研究助理的視角與敘事。輔仁大學跨文化研究所翻譯學碩士在職專班碩士論文,新北市。 (取自https://hdl.handle.net/11296/f38d2u )
[17]林怡萱(2011)。台灣流行音樂歌詞中所反映的當代文化:語料庫語言學研究。輔仁大學跨文化研究所語言學碩士班碩士論文,新北市。 (取自https://hdl.handle.net/11296/55ra9c )
[18] Serban, I. V., Lowe, R., Henderson, P., Charlin, L., & Pineau, J. (2015). A survey
of available corpora for building data-driven dialogue systems. arXiv preprint
arXiv:1512.05742.
[19] Cui, Y., Liu, T., Che, W., Xiao, L., Chen, Z., Ma, W., Wang, S., & Hu, G. (2018). A span-extraction dataset for chinese machine reading comprehension. arXiv preprint arXiv:1810.07366.
[20] Chen, J., Chen, Q., Liu, X., Yang, H., Lu, D., & Tang, B. (2018). The BQ Corpus: A Large-scale Domain-specific Chinese Corpus For Sentence Semantic Equivalence Identification. https://doi.org/10.18653/v1/D18-1536
[21] Weizenbaum, J. (1966). ELIZA a computer program for the study of natural language communication between man and machine. Commun. ACM, 9, 36-45.
[22] Wilensky, R., Chin, D. N., Luria, M., Martin, J. H., Mayfield, J., & Wu, D. (1989). The Berkeley UNIX Consultant Project (UCB/CSD-89-520). http://www2.eecs.berkeley.edu/Pubs/TechRpts/1989/5896.html
[23] Wallace, R. (2003). The elements of AIML style. Alice AI Foundation.
[24] Robert, 2018, 什麼是 Chatbot 聊天機器人?它能幫你導入客流量,是行銷自動化的必備工具。(取自https://blog.gogopartners.com/%E4%BA%86%E8%A7%A3%E4%BB%80%E9%BA%BC%E6%98%AF-chatbot-%E8%81%8A%E5%A4%A9%E6%A9%9F%E5%99%A8%E4%BA%BA )
[25] 李勝凱(2018)。聊天機器人應用之探討-以南華大學資管系為例。南華大學資訊管理學系碩士論文,嘉義縣。 (取自https://hdl.handle.net/11296/6g9d56 )
[26] Okuda, T., & Shoda, S. (2018). AI-based chatbot service for financial industry. Fujitsu Scientific and Technical Journal, 54, 4-8.
[27] 劉威岑(2019)。利用深度學習聊天機器人設計電腦維修流程。中原大學資訊管理研究所碩士論文,桃園縣。(取自https://hdl.handle.net/11296/69h6u4 )
[28] Zhou, L., Gao, J., Li, D., & Shum, H.-Y. (2020). The design and implementation of xiaoice, an empathetic social chatbot. Computational Linguistics, 46(1), 53-93.
[29] Francis, Arun. (2020). Home Automation Chat Bot using IOT. Waffen-und Kostumkunde. 11. 92-96.
[30] Hua, P. (2018)。當憂鬱來臨時|人工智慧(AI)與人類治療師的解憂進行曲。(取自https://reurl.cc/b53KK6 )
[31] 陳皓鈺(2019)。應用聊天機器人於問卷調查之滿意度與系統易用度研究。輔仁大學統計資訊學系應用統計碩士在職專班碩士論文,新北市。 (取自https://hdl.handle.net/11296/8drkc7 )
[32] 楊智斌, & 林子軒. (2020). 建築工程應用BIM所需資源 共享平台規劃研究.
[33] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M., & Brew, J. (2019). Transformers: State-of-the-art Natural Language Processing.
[34] Naseem, U., Razzak, I., Khan, S., & Prasad, M. (2020a). A Comprehensive Survey on Word Representation Models: From Classical to State-Of-The-Art Word Representation Language Models. ArXiv, abs/2010.15036.
[35] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. arXiv 2017. arXiv preprint arXiv:1706.03762.
[36] Rozeva, A., & Zerkova, S. (2017). Assessing semantic similarity of texts – Methods and algorithms (Vol. 1910). https://doi.org/10.1063/1.5014006 |