博碩士論文 108322004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:101 、訪客IP:3.14.132.52
姓名 黃昱樺(Yu-Hua Huang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 基於BERT語意分析模型的智慧型BIM資訊搜尋問答系統之研究
(Intelligent Question Answering System for BIM Information Search Based on BERT Semantic Model)
相關論文
★ 應用智慧標籤及數據驅動方法於水接觸結構物之結構評估★ 基於低功耗嵌入式系統及高精度MEMS感測器的智慧鋼索監測系統研發
★ Sensor Code-based Smart Tag Embedded in Concrete for Seepage Sensing Caused by Cracks★ 智慧型居家機器人用於地震後自動巡查及應變處置之研究
★ 利用UAV整合LoRa與磁導喚醒技術的物聯網架構研發★ 基於磁吸附與全向輪技術的鋼結構攀爬機器人開發與驗證
★ 基於微型機器學習的智能避障系統在外牆檢測自主移動機器人中的應用★ 基於ROS的遠端自動多螺栓 檢測機器人系統開發
★ 基於BIM與無線喚醒物聯網裝置之智慧化結構檢測系統開發★ 利用微型機器學習與微控制器即時檢測室內地磚空心缺陷
★ 結合智慧感測標籤與支持向量機快速判定混凝土裂縫位置★ 應用於鋼結構檢測之高機動型蚇蠖攀爬機器人設計分析及實作驗證
★ 混凝土缺陷自動修補機器人之研發★ 研發具邊緣運算能力之無線振動量測裝置應用於橋梁鋼索特徵頻率偵測
★ 結合智慧感測標籤與機器學習方法判別混凝土內部鋼筋鏽蝕可能性之研究★ 應用於攀爬檢測機器人之輕量級即時多目標螺栓缺陷影像檢測系統之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 近年來,以3D建築資訊模型為重心基礎的BIM(Building Information Modeling)技術在營建工程產業的應用發展上大幅進步,因而造成越來越多人對於BIM領域開始產生好奇,在網路上、在圖書館內查詢相關文章、資訊來認識BIM,並增加此領域之專業知識。
本研究目的為研究出用於BIM訊息(專業知識、最新消息)和以BIM文件為主要搜尋範圍的智慧型搜尋功能的中文問答系統,並開發手機聊天機器人的應用程式作為問題輸入的使用者介面,供國內應用BIM使用者所需資源。本研究提出以BERT(Bidirectional Encoder Representations from Transformers)語言模型為基礎核心,依據專業使用者及一般使用者兩類不同用戶,將問答文本劃分為專業使用者較常查詢之BIM文件、資訊,和一般使用者欲了解的BIM領域知識或是最新消息,並透過大量問答文本資料進行深度學習訓練,並以伺服器和Android系統之手機進行Socket間的通訊,以達成傳送手機端問題及服務器答案之目的。並且,在不同的問答測試下,將其結果與不同瀏覽器的搜尋結果做比較。最終,本論文可獲得,此系統確實可以正確地給予兩句不同字但同義之句子同樣之回覆,且透過此運用於聊天機器人app的問答系統,的確可以有效地將搜尋結果範圍縮小、搜尋速度加快。然而,在較短的句子中,兩句不同語義但部分文字之位置、字相同的句子,可能會被系統誤認為相同問題,並給予一樣之答案,並造成誤答,未來可能透過向BIM領域專業人士發送問卷的方式,來提升文本的專業性,由修改語句架構的方式,增加句子間的差異性,提升文本準確性,並且增進語言模型自然語言之判斷能力,提升系統之正確性。
摘要(英) In recent years, BIM (Building Information Modeling) technology based on 3D building information modeling has made great progress in the application and development of the construction engineering industry. This has caused more and more people to become curious about the BIM field. Search related articles and information in the library to learn about BIM and increase professional knowledge in this field.
The purpose of this research is to develop a Chinese question answering system for BIM messages (professional knowledge, latest news) and smart search functions with BIM documents as the main search scope, and to develop a mobile chat robot application as a user interface for question input , For the resources needed by domestic BIM users. This research proposes to use the BERT (Bidirectional Encoder Representations from Transformers) language model as the basic core. According to two different types of users, professional users and general users, the question and answer text is divided into BIM documents, information, and general that professional users frequently query. The user wants to know the BIM domain knowledge or the latest news, and conducts deep learning training through a large amount of question and answer text data, and communicates between the server and the mobile phone of the Android system through Socket to achieve the purpose of sending mobile phone questions and server answers . And, under different Q&A tests, compare the results with the search results of different browsers. In the end, this paper can obtain that this system can indeed give two different words but synonymous sentences with the same reply correctly, and through this question and answer system applied to the chatbot app, it can indeed effectively narrow the search results and search speed. accelerate. However, in a shorter sentence, two sentences with different meanings but with the same position and word in part of the text may be mistaken for the same question by the system, and the same answer will be given, resulting in a wrong answer. In the future, it may be transferred to the BIM field. Professionals send questionnaires to enhance the professionalism of the text. By modifying the sentence structure, the difference between sentences is increased, the accuracy of the text is improved, and the judgment ability of the natural language of the language model is improved, and the correctness of the system is improved.
關鍵字(中) ★ BIM
★ 手機應用程式
★ BERT
★ 語言模型
★ 深度學習
★ Socket通訊
關鍵字(英)
論文目次 目錄
摘要 i
Abstract ii
致 謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1-1 研究背景 1
1-2 研究目的 2
1-3 研究架構 3
第二章 文獻回顧 4
2-1 BIM資源之相關搜尋 4
2-2 語言模型 6
2-3 語料庫 8
2-4 聊天機器人 9
第三章 研究方法 11
3-1 系統架構 11
3-2 系統環境 13
3-3 遷移式學習 14
3-4 BERT預訓練模型 16
3-4-1 模型特徵 16
3-4-2 BERT的遷移式學習 21
3-5 Socket通訊 23
3-6 資料蒐集 28
3-6-1 資料選用 28
3-6-2 文件分類方法 29
3-6-3 數據準備 30
3-6-4 數據增強 31
3-7 語言模型訓練次系統 33
3-7-1 訓練 33
3-7-2 驗證係數[34] 36
3-7-3 檢驗模型 38
3-8服務器次系統 39
3-8-1 倒排表搜索 40
3-8-2 文本表示 41
3-8-3 餘弦函數相似度 45
3-9 使用者端 47
第四章 系統驗證與評估 49
4-1 語言模型訓練結果與調整 49
4-2 問答系統測試結果 55
4-3 與搜尋引擎之搜尋速度比較 71
第五章 結論與未來展望 81
參考文獻 82
參考文獻 [1] Gao, G., Liu, Y.-S., Wang, M., Gu, M., & Yong, J.-H. (2015). A query expansion method for retrieving online BIM resources based on Industry Foundation Classes. Automation in Construction, 56, 14-25. https://doi.org/https://doi.org/10.1016/j.autcon.2015.04.006
[2]Wu, S., Shen, Q., Deng, Y., & Cheng, J. (2019). Natural-language-based intelligent retrieval engine for BIM object database. Computers in Industry, 108, 73-88. https://doi.org/https://doi.org/10.1016/j.compind.2019.02.016
[3]Li, N., Li, Q., Liu, Y.-S., Lu, W., & Wang, W. (2020). BIMSeek++: Retrieving BIM components using similarity measurement of attributes. Computers in Industry, 116, 103186. https://doi.org/https://doi.org/10.1016/j.compind.2020.103186
[4]Ogada, K., Mwangi, W., & Cheruiyot, W. (2015). N-gram Based Text Categorization Method for Improved Data Mining. Journal of Information Engineering and Applications, 5, 35-43.
[5]Gao, X., & Zhu, N. (2013). Hidden Markov Model and its Application in Natural Language Processing. Information Technology Journal, 12, 4256-4261. https://doi.org/10.3923/itj.2013.4256.4261
[6]Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. (2003). A neural probabilistic language model. J. Mach. Learn. Res., 3(null), 1137–1155.
[7]Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
[8]Pennington, J., Socher, R., & Manning, C. (2014, oct). GloVe: Global Vectors for Word Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar.
[9] Ilić, S., Marrese-Taylor, E., Balazs, J. A., & Matsuo, Y. (2018). Deep
contextualized word representations for detecting sarcasm and irony. arXiv
preprint arXiv:1809.09795.
[10] Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training.
[11] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
[12] Lin, S. (2003). 基於自然語言處理技術的研究主題抽取與分析 (Extraction and Analysis of Research Topics Based on NLP Technologies) [In Chinese]. ROCLING.
[13]黃昱仁。「語料庫語言學分析於英語教學之研究:小說傲慢與偏見中之高頻語法結構及其序列之分析」。碩士論文,臺北市立大學英語教學系,2015。https://hdl.handle.net/11296/5wy3dy 。
[14]許尤芬(2012)。中文多義詞「發」之語義探討:以語料庫為本。臺北市立教育大學華語文教學碩士學位學程碩士論文,臺北市。 (取自https://hdl.handle.net/11296/8tug5n )
[15]邱筱涵(2016)。法律翻譯語料庫建置及分析。國立臺灣大學翻譯碩士學位學程碩士論文,台北市。 (取自https://hdl.handle.net/11296/mjsp68 )
[16]林素玲(2020)。醫療語境及其相關術語的語料庫建置過程研究: 研究助理的視角與敘事。輔仁大學跨文化研究所翻譯學碩士在職專班碩士論文,新北市。 (取自https://hdl.handle.net/11296/f38d2u )
[17]林怡萱(2011)。台灣流行音樂歌詞中所反映的當代文化:語料庫語言學研究。輔仁大學跨文化研究所語言學碩士班碩士論文,新北市。 (取自https://hdl.handle.net/11296/55ra9c )
[18] Serban, I. V., Lowe, R., Henderson, P., Charlin, L., & Pineau, J. (2015). A survey
of available corpora for building data-driven dialogue systems. arXiv preprint
arXiv:1512.05742.
[19] Cui, Y., Liu, T., Che, W., Xiao, L., Chen, Z., Ma, W., Wang, S., & Hu, G. (2018). A span-extraction dataset for chinese machine reading comprehension. arXiv preprint arXiv:1810.07366.
[20] Chen, J., Chen, Q., Liu, X., Yang, H., Lu, D., & Tang, B. (2018). The BQ Corpus: A Large-scale Domain-specific Chinese Corpus For Sentence Semantic Equivalence Identification. https://doi.org/10.18653/v1/D18-1536
[21] Weizenbaum, J. (1966). ELIZA a computer program for the study of natural language communication between man and machine. Commun. ACM, 9, 36-45.
[22] Wilensky, R., Chin, D. N., Luria, M., Martin, J. H., Mayfield, J., & Wu, D. (1989). The Berkeley UNIX Consultant Project (UCB/CSD-89-520). http://www2.eecs.berkeley.edu/Pubs/TechRpts/1989/5896.html
[23] Wallace, R. (2003). The elements of AIML style. Alice AI Foundation.
[24] Robert, 2018, 什麼是 Chatbot 聊天機器人?它能幫你導入客流量,是行銷自動化的必備工具。(取自https://blog.gogopartners.com/%E4%BA%86%E8%A7%A3%E4%BB%80%E9%BA%BC%E6%98%AF-chatbot-%E8%81%8A%E5%A4%A9%E6%A9%9F%E5%99%A8%E4%BA%BA )
[25] 李勝凱(2018)。聊天機器人應用之探討-以南華大學資管系為例。南華大學資訊管理學系碩士論文,嘉義縣。 (取自https://hdl.handle.net/11296/6g9d56 )
[26] Okuda, T., & Shoda, S. (2018). AI-based chatbot service for financial industry. Fujitsu Scientific and Technical Journal, 54, 4-8.
[27] 劉威岑(2019)。利用深度學習聊天機器人設計電腦維修流程。中原大學資訊管理研究所碩士論文,桃園縣。(取自https://hdl.handle.net/11296/69h6u4 )
[28] Zhou, L., Gao, J., Li, D., & Shum, H.-Y. (2020). The design and implementation of xiaoice, an empathetic social chatbot. Computational Linguistics, 46(1), 53-93.
[29] Francis, Arun. (2020). Home Automation Chat Bot using IOT. Waffen-und Kostumkunde. 11. 92-96.
[30] Hua, P. (2018)。當憂鬱來臨時|人工智慧(AI)與人類治療師的解憂進行曲。(取自https://reurl.cc/b53KK6 )
[31] 陳皓鈺(2019)。應用聊天機器人於問卷調查之滿意度與系統易用度研究。輔仁大學統計資訊學系應用統計碩士在職專班碩士論文,新北市。 (取自https://hdl.handle.net/11296/8drkc7 )
[32] 楊智斌, & 林子軒. (2020). 建築工程應用BIM所需資源 共享平台規劃研究.
[33] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M., & Brew, J. (2019). Transformers: State-of-the-art Natural Language Processing.
[34] Naseem, U., Razzak, I., Khan, S., & Prasad, M. (2020a). A Comprehensive Survey on Word Representation Models: From Classical to State-Of-The-Art Word Representation Language Models. ArXiv, abs/2010.15036.
[35] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. arXiv 2017. arXiv preprint arXiv:1706.03762.
[36] Rozeva, A., & Zerkova, S. (2017). Assessing semantic similarity of texts – Methods and algorithms (Vol. 1910). https://doi.org/10.1063/1.5014006
指導教授 林子軒 審核日期 2021-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明