博碩士論文 108322107 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.222.102.33
姓名 莊皓翔(Hao-Hsiang Chuang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 屋頂型太陽能板於不同環境之模擬與分析
(Simulations and Analysis of Solar Rooftop under different environments)
相關論文
★ 路權取得資料探勘與決策輔助工具設計之研究★ 以時空資料庫管理管線單位道路申挖許可之雛形系統研究
★ 關鍵基礎設施相依性模型設計與應用★ 應用RFID技術於室內空間防救災時的疏散指引系統之研究
★ 考量列車迴轉與擾動因子情況下高速鐵路系統最佳化排班設計之研究★ 應用資料探勘分群分類演算法與空間資料庫技術在鋪面裂縫影像辨識之初探
★ 以本體論建構工程程式設計課程之線上考試平台研究★ 結合遙測影像與GIS資料以資料挖掘 技術進行崩塌地辨識-以石門水庫集水區為例
★ 設計整合型手持式行動裝置平台於災害設施損毀資料收集研究★ 考量擾動因子情況下傳統鐵路時刻表建置合併於高速鐵路時刻表模型之回顧與探討
★ 關鍵基礎設施相依性分析:以竹科某晶圓廠區為例★ 建築資訊模型於火災原因調查流程的應用
★ Hadoop雲端平台在工程應用之探討研究★ 關鍵基礎設施投入產出停轉模型之回顧與應用
★ 擴展建築資訊模型於防救災應用:使用Revit平台★ 應用交通資料蒐集與發佈設備及資料探勘法協助觀光地區交通管理策略之研究:以桃園大溪老街為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣經濟部已訂定在2025年再生能源發電佔比要達到20%的政策目標,且太陽能是再生能源中的首要來源,在近年來也以倍數的規模成長,而隨著太陽能在政策中不斷的提高裝置容量之外,若發電效率也提高可以發電量會有顯著的成長。
在家庭能源管理系統(Home Energy Management System, HEMS)配合再生能源系統的情況下可以更有效的降低能源成本,在政府強力推動綠能屋頂全民參與的情況下,最容易接觸到屋頂型太陽能板,在架設太陽能板前若能有效的評估和日後能有效的監測太陽能板的使用情形,如遮蔽、髒汙…等干擾,即可有效的提升太陽能板的發電效率,故本研究想藉此提出一模擬太陽能板於不同環境下的方法,以解決上述之問題。
本研究利用建築資訊模型(Building Information Modeling, BIM)得到需要模擬的外部模型,並利用計算流體力學(Computational Fluid Dynamics, CFD)進行環境模擬,加入氣候環境參數下並計算於太陽熱通量下實際對太陽能板所造成的溫度,即可得知太陽能板因熱損失的發電效率,再加入不同熱源的情形下對太陽能板所造成的溫度,以了解在不同環境下太陽能板的溫度及發電影響。
在模擬溫度的準確度上,本研究系統驗證中利用一案例2021年5月11日進行驗證,在進行太陽能板架設前於不同環境狀況下進行模擬,模擬值與實際值誤差僅2.7%,可以有效提供屋頂型太陽能板架設前的環境評估及後續的發電量追蹤。
摘要(英) ROC Ministry of Economic Affairs has set a goal of increasing renewable energy power generation to 20% by 2025, and solar energy becomes a primary source among renewable energy. In recent years, it has grown tremendously. As solar energy policy allows to increase the capacity of solar devices and with the improve of efficiency, there will be a significant growth in power generation.
With the coordination of Home Energy Management System (HEMS) and renewable energy system, reducing energy costs can be more effective. With the government highly promoting the participation of green energy roof for everyone, the most accessible roof-type is solar panels. When setting up the solar panels, if it can be assessed effectively and monitored its use, such as occlude, dirty and etc, it can effectively improve the power generation efficiency of solar panels. Therefore, this research is mainly about proposing the simulation of solar panels in different environments to solve the problems.
This research uses Building Information Modeling (BIM) get the model to be simulated, and Computational Fluid Dynamics (CFD) to simulate the environment, add the climate environmental parameters and calculates the actual temperature under the solar heat flux to know the power generation efficiency of the solar panel due to heat loss. Then add the thermal factor caused by the solar panel to understand the temperature of the solar panel and impact of power generation in different environments.
In the accuracy of the simulated temperature, the verification of this research used a case to prove on May 11, 2021, To simulate in different environments situation of the solar panel, the error between the simulated value and the actual value is only 2.7% and which can effectively provide the environmental assessment before the roof photovoltaics is erected and the subsequent power generation tracking.
關鍵字(中) ★ 太陽能
★ HEMS
★ CFD
★ 發電效率
★ 溫度模擬
關鍵字(英) ★ Solar power
★ Power Generation Efficient
★ Temperature Simulation
★ HEMS
★ CFD
論文目次 摘 要 i
Abstract ii
誌 謝 iii
目 錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1 研究背景與動機 1
1-2 研究問題與目的 3
1-3 研究範圍與限制 4
1-4 研究流程 4
1-5 論文架構 7
第二章 文獻回顧 8
2-1 Home Energy Management System 8
2-1-1 HEMS應用再生能源系統 11
2-1-2 智慧電網 13
2-1-3 物聯網 14
2-1-4 HEMS儲能系統 16
2-1-5 ZigBee 17
2-2 太陽能相關回顧 20
2-2-1 太陽能發電影響因素 21
2-2-2 太陽能板清潔 22
2-3 Building Information Modeling 23
2-3-1 Revit 23
2-3-2 Dynamo 24
2-4 Arduino 25
2-5 Computational Fluid Dynamics 27
2-6 人為熱源 30
2-7 文獻回顧總結 34
第三章 太陽能監測裝置與模擬軟體 35
3-1 太陽能監測裝置架構 35
3-1-1 太陽能板 36
3-1-2 Arduino硬體設計 36
3-1-3 Arduino軟體設計 41
3-2 BIM建築模型 42
3-2-1 示範大樓的Revit模型建立 43
3-2-2 導入Fusion 360 46
3-3 模擬太陽能板溫度環境 49
3-3-1 環境模型建立 49
3-3-2 熱源模擬 54
3-4 計算太陽能板實際發電效率 55
第四章 研究案例與成果驗證 59
4-1 裝置實作流程 59
4-1-1 資料收集 60
4-1-2 模型建立 62
4-2 模擬太陽能板溫度 63
4-3 研究案例數據分析 68
4-4 成果比較 75
第五章 結論與建議 80
5-1 結論 80
5-2 建議 81
5-3 貢獻 81
參考文獻 83
評審意見回覆表 94
參考文獻 徐偉誠, (2014). 電力線載波通訊技術於智慧電網之應用, 碩士論文, 國立中山大學電機工程學系,高雄市,臺灣。

中央大學氣象觀測站, (2021). 10M for last 24 Hours, 檢索日期2021年11月10日, 取自https://reurl.cc/DZNlqE。

全國法規資料庫, (2021). 建築技術規則建築設計施工編, 檢索日期2021年12月1日, 取自https://reurl.cc/Gbzp5y。

經濟部能源局, (2005). 能源查核與節約能源案例手冊-鍋爐系統, 檢索日期2021年11月16日, 取自https://reurl.cc/6DpdXV。

Al Shehri, A., Parrott, B., Carrasco, P., Al Saiari, H., & Taie, I. (2016). Impact of dust deposition and brush-based dry cleaning on glass transmittance for PV modules applications. Solar Energy, 135, 317-324.

Al-Ali, A., Zualkernan, I., Rashid, M., Gupta, R., & AliKarar, M. (2017). A smart home energy management system using IoT and big data analytics approach. IEEE Transactions on Consumer Electronics, 63(4), 426-434.

Asafu-Adjaye, J. (2000). The relationship between energy consumption, energy prices and economic growth: time series evidence from Asian developing countries. Energy economics, 22(6), 615-625.

Assila, H., Essadiqi, E., Faqir, M., Meziane, M., Ghanameh, F., & Ahzi, S. (2016, November). Numerical simulation of photovoltaic panel thermal condition under wind convection. International Renewable and Sustainable Energy Conference, IEEE, Marrakesh, Morocco, Nov 14-17, 2016.

Azhar, S. (2011). Building Information Modeling (BIM): Trends, Benefits, Risks, and Challenges for the AEC Industry. Leadership and management in engineering, 11(3), 241-252.

Byun, J., Hong, I., & Park, S. (2012). Intelligent cloud home energy management system using household appliance priority based scheduling based on prediction of renewable energy capability. IEEE Transactions on Consumer Electronics, 58(4), 1194-1201.

Caccamo, M., Calabrò, E., Cannuli, A., & Magazù, S. (2016). Wavelet Study of Meteorological Data Collected by Arduino-Weather Station: Impact on Solar Energy Collection Technology. Asia Conference on Power and Electrical Engineering, MATEC, Bangkok, Thailand, Mar 20-22, 2016.

Dabaghzadeh, N., & Eslami, M. (2019). Temperature distribution in a photovoltaic module at various mounting and wind conditions: A complete CFD modeling. Journal of Renewable and Sustainable Energy, 11(5), 053503.

Divin, N. (2020). BIM by using Revit API and Dynamo. A review. AlfaBuild, 14(2), 1404-1404.

Ergen, S. (2004). ZigBee/IEEE 802.15. 4 Summary. University of California, Berkeley, USA, 2004.

Fasel, H., Meng, F., Shams, E., & Gross, A. (2013). CFD analysis for solar chimney power plants. Solar energy, 98, 12-22.

Gholinejad, H., Loni, A., Adabi, J., & Marzband, M. (2020). A hierarchical energy management system for multiple home energy hubs in neighborhood grids. Journal of Building Engineering, 28, 101028.

Gusa, R., Sunanda, W., Dinata, I., & Handayani, T. (2018). Monitoring System for Solar Panel Using Smartphone Based on Microcontroller. 2nd International Conference on Green Energy and Applications, IEEE, Singapore, Mar 24-26, 2018.

Halmann, M., & Steinberg, M. (1998). Greenhouse Gas Carbon Dioxide Mitigation:  Science and Technology. CRC, Boca Raton, Florida, USA.

Han, D., & Lim, J. (2010). Design and implementation of smart home energy management systems based on zigbee. IEEE Transactions on Consumer Electronics, 56(3), 1417-1425.

Han, J., Choi, C., Park, W., Lee, I., & Kim, S. (2014). PLC-based photovoltaic system management for smart home energy management system. IEEE International Conference on Consumer Electronics, Las Vegas, NV, USA, Jan 10-13, 2014.

Han, J., Choi, C., Park, W., & Lee, I. (2011). Green Home Energy Management System through comparison of energy usage between the same kinds of home appliances. 15th International Symposium on Consumer Electronics, IEEE, Singapore, Jun 14-17, 2011.

Hankins, M. (2010). Stand-alone Solar Electric Systems: The Earthscan Expert Handbook for Planning, Design and Installation. Routledge, London, UK.

Hee, J., Kumar, L., Danner, A., Yang, H., & Bhatia, C. (2012). The Effect of Dust on Transmission and Self-cleaning Property of Solar Panels. Energy Procedia, 15, 421-427.

Hemmati, R. (2017). Technical and economic analysis of home energy management system incorporating small-scale wind turbine and battery energy storage system. Journal of Cleaner Production, 159, 106-118.

Herzog, A., Lipman, T., Edwards, J., & Kammen, D. (2001). Renewable Energy: A Viable Choice. Environment: Science and Policy for Sustainable Development, 43(10), 8-20.

Homadi, A., Hall, T., & Whitman, L. (2020). Study a novel hybrid system for cooling solar panels and generate power. Applied Thermal Engineering, 179, 115503.

Hou, X., Wang, J., Huang, T., Wang, T., & Wang, P. (2019). Smart Home Energy Management Optimization Method Considering Energy Storage and Electric Vehicle. IEEE Access, 7, 144010-144020.

Iqbal, Z., Javaid, N., Iqbal, S., Aslam, S., Khan, Z., Abdul, W., Almogren, A., & Alamri, A. (2018). A Domestic Microgrid with Optimized Home Energy Management System. Energies, 11(4), 1002.

Jaszczur, M., Teneta, J., Hassan, Q., Majewska, E., & Hanus, R. (2021). An Experimental and Numerical Investigation of Photovoltaic Module Temperature Under Varying Environmental Conditions. Heat Transfer Engineering, 42(3-4), 354-367.

Jumaat, S., & Othman, M. (2017). Solar Energy Measurement Using Arduino. Malaysia Technical Universities Conference on Engineering and Technology, IOP, Penang, Malaysia, Dec 6-7, 2017.

Kannan, R., Leong, K., Osman, R., Ho, H., & Tso, C. (2006). Life cycle assessment study of solar PV systems: An example of a 2.7 kw_p distributed solar PV system in Singapore. Solar energy, 80(5), 555-563.

Karthikeyan, M., & Johnson, J. (2020). Analysis and Performance improvements of Photovoltaic system by using fins for heat reduction by CFD. In IOP Conference Series: Materials Science and Engineering , Chennai, India, Feb 24-29, 2020.

Kazado, D., Kavgic, M., & Eskicioglu, R. (2019). Integrating Building Information Modeling (BIM) and sensor technology for Facility Management. Journal of Information Technology in Construction, 24(23), 440-458.

Kekre, A., & Gawre, S. (2017). Solar photovoltaic remote monitoring system using IOT. International Conference on Recent Innovations in Signal processing and Embedded Systems, IEEE, Bhopal, India, Oct 27-29, 2017.

Kensek, K. (2014). Integration of Environmental Sensors with BIM: case studies using Arduino, Dynamo, and the Revit API. Consejo Superior de Investigaciones Científicas, 66(536), 31-39.

Kiriş, B., Bingöl, O., Şenol, R., & Altintaş, A. (2016). Solar array system layout optimization for reducing partial shading effect. Acta Physica Polonica A, 130(1), 55-59.

Kuzlu, M., Pipattanasomporn, M., & Rahman, S. (2012). Hardware Demonstration of a Home Energy Management System for Demand Response Applications. IEEE Transactions on Smart grid, 3(4), 1704-1711.

Latiffi, A., Brahim, J., & Fathi, M. (2014). The Development of Building Information Modeling (BIM) Definition. Applied Mechanics and Materials, 567, 625-630.

Madhava Reddy, H., & Venu Vinod, A. (2019). CFD simulation of the heat transfer using nanofluids in microchannel with dimple and protrusion. Indian Chemical Engineer, 61(1), 40-51.

Martinopoulos, G., Missirlis, D., Tsilingiridis, G., Yakinthos, K., & Kyriakis, N. (2010). CFD modeling of a polymer solar collector. Renewable Energy, 35(7), 1499-1508.

Mengana, S., & Mousiadis, T. (2016). Parametric BIM: Energy Performance Analysis Using Dynamo for Revit. Kungliga Tekniska högskolan, Stockholm, Sweden.

Mirzaei, P., & Zhang, R. (2015). Validation of a Climatic CFD Model to Predict the Surface Temperature of Building Integrated Photovoltaics. Energy Procedia, 78, 1865-1870.

Moharram, K., Abd-Elhady, M., Kandil, H., & El-Sherif, H. (2013). Enhancing the performance of photovoltaic panels by water cooling. Ain Shams Engineering Journal, 4(4), 869-877.

Neri, M., Leppänen, P., Bani, S., Pentti, M., & Pilotelli, M. (2016). Experimental and Computational Study of the Temperatures Field Around a Chimney Roof Penetration. Fire technology, 52(6), 1799-1823.

Parrott, B., Zanini, P., Shehri, A., Kotsovos, K., & Gereige, I. (2018). Automated, robotic dry-cleaning of solar panels in Thuwal, Saudi Arabia using a silicone rubber brush. Solar Energy, 171, 526-533.

Peng, Z., Herfatmanesh, M., & Liu, Y. (2017). Cooled solar PV panels for output energy efficiency optimisation. Energy Conversion and Management, 150, 949-955.

Peter Michael. (2019). A Conversion Guide: Solar Irradiance and Lux Illuminance . IEEE Dataport. from: https://reurl.cc/Kpxgxg

Salamak, M., Jasinski, M., Plaszczyk, T., & Zarski, M. (2018). Analytical modelling in Dynamo. Peoples′ Friendship University of Russia, Moscow, Russia.

Schou, P. (2000). Polluting Non-Renewable Resources and Growth. Environmental and Resource Economics, 16(2), 211-227.
Shafie-Khah, M., & Siano, P. (2017). A Stochastic Home Energy Management System Considering Satisfaction Cost and Response Fatigue. IEEE Transactions on Industrial Informatics, 14(2), 629-638.

Shaikh, M. (2017). A Review Paper on Electricity Generation from Solar Energy. International Journal for Research in Applied Science & Engineering Technology, 5(9), 1884-1889.

Shareef, H., Ahmed, M., Mohamed, A., & Al Hassan, E. (2018). Review on Home Energy Management System Considering Demand Responses, Smart Technologies, and Intelligent Controllers. IEEE Access, 6, 24498-24509.

Siecker, J., Kusakana, K., & Numbi, E. (2017). A review of solar photovoltaic systems cooling technologies. Renewable and Sustainable Energy Reviews, 79, 192-203.

Son, Y., Pulkkinen, T., Moon, K., & Kim, C. (2010). Home energy management system based on power line communication. Digest of Technical Papers International Conference on Consumer Electronics, IEEE, Las Vegas, NV, USA, Jan 9-13, 2010.

Sulaiman, S., Singh, A., Mokhtar, M., & Bou-Rabee, M. (2014). Influence of Dirt Accumulation on Performance of PV Panels. Energy Procedia, 50, 50-56.

Tagliafico, L., Scarpa, F., & De Rosa, M. (2014). Dynamic thermal models and CFD analysis for flat-plate thermal solar collectors–A review. Renewable and Sustainable Energy Reviews, 30, 526-537.

Teo, H., Lee, P., & Hawlader, M. (2012). An active cooling system for photovoltaic modules. Applied Energy, 90(1), 309-315.

Tischer, H., & Verbic, G. (2011). Towards a smart home energy management system - A dynamic programming approach. IEEE PES Innovative Smart Grid Technologies. IEEE. Perth, WA, Australia, Nov 13-16, 2011.

Ustun, T., & Hussain, S. (2020). Standardized Communication Model for Home Energy Management System. IEEE Access, 8, 180067-180075.

Vasel, A., & Iakovidis, F. (2017). The effect of wind direction on the performance of solar PV plants. Energy Conversion and Management, 153, 455-461.

Wang, J., Sun, Z., Zhou, Y., & Dai, J. (2012). Optimal dispatching model of Smart Home Energy Management System. IEEE PES Innovative Smart Grid Technologies. IEEE, Tianjin, China, May 21-24, 2012.

Wei, Y. (2017). The development and application of CFD technology in mechanical engineering. In IOP Conference Series: Materials Science and Engineering. IOP Publishing, Changsha, China.

Yang, J., Liu, J., Fang, Z., & Liu, W. (2018). Electricity Scheduling Strategy for Home Energy Management System with Renewable Energy and Battery Storage: A Case Study. IET Renewable Power Generation, 12(6), 639-648.

Yao, L., Lai, C., & Lim, W. (2015). Home Energy Management System Based on Photovoltaic System. IEEE International Conference on Data Science and Data Intensive Systems, IEEE, Sydney, NSW, Australia, Dec 11-13, 2015.

Zhang, D., Li, S., Sun, M., & O’Neill, Z. (2016). An Optimal and Learning-Based Demand Response and Home Energy Management System. IEEE Transactions on Smart Grid, 7(4), 1790-1801.

Zhao, C., Dong, S., Li, F., & Song, Y. (2015). Optimal home energy management system with mixed types of loads. CSEE Journal of Power and Energy Systems, 1(4), 29-37.

Zhao, Z., Lee, W., Shin, Y., & Song, K. (2013). An Optimal Power Scheduling Method for Demand Response in Home Energy Management System. IEEE transactions on smart grid, 4(3), 1391-1400.

Zhe, L., Yusoff, M., Abd Razak, A., Misrun, M., Ibrahim, S., Fahmi, M., & Rosmi, A. (2019). Effect of Water Cooling Temperature on Photovoltaic Panel Performance by Using Computational Fluid Dynamics (CFD). Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 56(1), 133-146.

Zhou, B., Li, W., Chan, K., Cao, Y., Kuang, Y., Liu, X., & Wang, X. (2016). Smart home energy management systems: Concept, configurations, and scheduling strategies. Renewable and Sustainable Energy Reviews, 61, 30-40.

Zhou, S., Wu, Z., Li, J., & Zhang, X. (2014). Real-time Energy Control Approach for Smart Home Energy Management System. Electric Power Components and Systems, 42(3-4), 315-326.

Zhong, Q., & Tong, D. (2020). Spatial layout optimization for solar photovoltaic (PV) panel installation. Renewable Energy, 150, 1-11.

Zhu, L., Raman, A., & Fan, S. (2015). Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. Proceedings of the national academy of sciences, 112(40), 12282-12287.
指導教授 周建成(Chien-Cheng Chou) 審核日期 2022-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明