博碩士論文 108322008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.223.132.164
姓名 林宜泓(Yi-Hong Lin)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 含變頻滑動支承不等高橋墩橋梁之最佳化設計
相關論文
★ 隔震橋梁含防落裝置與阻尼器之非線性動力反應分析研究★ 橋梁碰撞效應研究
★ 應用位移設計法於雙層隔震橋之研究★ 具坡度橋面橋梁碰撞效應研究
★ 橋梁極限破壞分析與耐震性能研究★ 應用多項式摩擦單擺支承之隔震橋梁研究
★ 橋梁含多重防落裝置之極限狀態動力分析★ 強震中橋梁極限破壞三維分析
★ 隔震橋梁之最佳化結構控制★ 跨越斷層橋梁之極限動力分析
★ 塑鉸極限破壞數值模型開發★ 橋梁直接基礎搖擺之極限分析
★ 考量斷層錯動與塑鉸破壞之橋梁極限分析★ Impact response and shear fragmentation of RC buildings during progressive collapse
★ 應用多項式滾動支承之隔震橋梁研究★ Numerical Simulation of Bridges with Inclined
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 多項式摩擦單擺支承(Polynomial Friction Pendulum Isolator,PFPI) 為具變頻特性之新型摩擦單擺支承,相對於傳統滑動隔震支承,可預防近斷層震波產生的低頻共振現象。PFPI的曲面函數為六次方多項式,經由多項式參數設計,可使支承具變頻之隔震效果。支承位移不大時,可利用回復勁度遞減之軟化段減緩結構加速度反應,當位移過大時,再藉由回復勁度遞增之硬化段減低位移反應,過去研究已證實PFPI可發揮變頻特性防止低頻共振現象,於近域與遠域震波皆發揮良好隔震效果。
以往研究主要討論之目標橋梁皆為規則性橋梁,橋墩高度均相同,但在不等高橋墩隔橋梁中,不同高度橋墩之勁度差異甚大,PFPI需利用不同參數組合之設計以達最佳之隔震效果,且前人所使用之數值分析法僅考量水平向與垂直向之雙向動力分析,而本研究多考慮側向與垂直向動力反應,其與軸向之反應行為會有著明顯差異。本研究針對PFPI不等高橋墩隔震橋,使用PSO-SA混合式演算法,針對不同震波,搜尋PFPI之最佳支承參數,同時在搜尋過程中限制PFPI參數使搜尋結果合理,並改善因限制PFPI參數,而降低之搜尋效率。最後透過觀察PSO-SA多目標函數中各目標權重比例與結構物反應之關係圖,選擇合適權重下之最佳參數做為設計結構物之參考。而從搜尋結果顯示來看,結構物反應皆能符合PSO-SA所設定之目標。
摘要(英) Polynomial Friction Pendulum Isolator is a new type of friction pendulum isolator with variable frequency characteristics. The feature can prevent low-frequency resonance from near-fault seismic waves. The function of PFPI is a hexagonal polynomial. By the design of the design of polynomial parameters, the bearing can have the vibration isolation effect of variable frequency. When the bearing displacement is small, isolator can reduce the acceleration of structure by the softening section which decreases restoring stiffness. When the bearing displacement is large, isolator can reduce the displacement of structure by the hardening section which increases restoring stiffness .The previous research has proved that PFPI can exert variable frequency characteristics to prevent low-frequency resonance, and it will have good effect of isolation.
The target bridges discussed in previous studies are all regular bridges with the same height of piers. However, isolated bridges with unequal height piers, the stiffness has big difference. PFPI needs to design different combination of parameters to reach the best isolation effect. Moreover, previous research only considers the axial and vertical directions dynamic analysis. In this study, we discuss not only axial and vertical directions but also side and vertical directions dynamic responses, which are significantly different from the axial response behavior. In this study, we use the PSO-SA hybrid search algorithm to search for the best support parameters of PFPI for bridges which have unequal height piers in different seismic waves. In addition, by restricting PFPI parameters ,we get reasonable parameters of PFPI, and improve the search efficiency caused by restriction. Finally, through observing the relationship between the weight ratio of each target and the response of the structure in the PSO-SA multi-objective function, the optimal parameters under the appropriate weight are selected as the reference for designing the structure. From the search results, it can be seen that the structural dynamic reponses can meet the objective function set in PSO-SA.
關鍵字(中) ★ 變曲率隔震支承
★ 變頻式隔震支承
★ 摩擦單擺支承
★ 不等高橋墩橋梁
★ PSO-SA混合式搜尋法
關鍵字(英) ★ variable-curvature seismic isolator
★ various frequencies seismic isolator
★ friction pendulum isolator
★ bridge with unequal height piers
★ PSO-SA hybrid search algorithm
論文目次 中文摘要 I
ABSTRACT II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 XIV
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.2.1 近遠域震波特性 2
1.2.2 變曲率摩擦單擺支承 3
1.2.3 新隱式非線性動力有限元素法 4
1.3 研究內容 4
第二章 多項式摩擦單擺支承 6
2.1 支承力學行為 6
2.2 多項式摩擦單擺之曲面函數與特性 7
2.3 瞬時隔震頻率 10
第三章 新隱式非線性結構動力分析方法 14
3.1 隱式非線性運動方程式 15
3.2 隱式直接積分法 17
3.2.1 Newmark直接積分法 17
3.2.2 Bathe複合積分法 18
3.3 Timoshenko梁元素 20
3.4 滑動支承元素 22
3.4.1 黏滯狀態 22
3.4.2 滑動狀態 24
3.4.3 分離狀態 28
第四章 PFPI最佳參數搜尋與分析結果探討 32
4.1 PSO-SA混合式搜尋法 32
4.1.1 粒子群演算法 32
4.1.2 模擬退火法 34
4.2 目標橋梁及分析震波 37
4.3 PFPI最佳參數搜尋之參數設定 38
4.4 支承最佳參數目標函數訂定 39
4.4.1 受橋軸向(東西向)及垂直向地震力 39
4.4.2 受垂直橋軸向(南北向)及垂直向地震力 42
4.5 最佳參數搜尋結果與探討 43
4.5.1 受橋軸向(東西向)地震力 43
4.5.2 受垂直橋軸向(南北向)及垂直向地震力 45
4.6 最佳化PFPI與FPS之性能比較 46
4.6.1 FPS之理論與設計參數 46
4.6.2 受橋軸向地震力之最佳化PFPI與FPS性能比較 47
4.6.3 受垂直橋軸向地震力之最佳化PFPI與FPS性能比較 47
4.6.4 受三向地震力之最佳化PFPI與FPS性能比較 47
第五章 最佳化曲盤之應用 120
5.1 抗拉拔裝置設計 120
5.1.1 可拉伸開孔彈簧元素 (Hook Spring) 120
5.1.2 抗拉拔裝置設計參數 120
5.2 目標橋梁增設抗拉拔裝置分析結果與討論 122
第六章 結論與建議 129
6.1 結論 129
6.2 未來研究方向 130
參考文獻 131
附錄 A 136
參考文獻 [1] Pranesh, M. and Sinha, R., “VFPI: an isolation device for aseismic design.” Earthquake Engineering and Structural Dynamics, 29(5), 603-627, 2000.
[2] Pranesh, M. and Sinha, R., “Earthquake Resistant Design of Structures using the Variable Frequency Pendulum Isolator.” Journal of Structural Engineering, ASCE, 128(7), 870-882, 2002.
[3] Pranesh, M. and Sinha, R., “Aseismic design of structure–equipment systems using variable frequency pendulum isolator” Nuclear Engineering and Design, 231(2), 129-139, 2004.
[4] Pranesh, M. and Sinha, R., “Behavior of structures isolated using VFPI during bear source ground motions.” 13th World Conference on Earthquake Engineering, Vancouver, Canada, No. 3105, 2004.
[5] Naeim, F. and Kelly, J. M., Design of Seismic Isolated Structures: From Theory to Practice. John Wiley & Sons, inc, 1999.
[6] Yang, Y. B., Lu, L.Y., Yau, J. D., “Chapter 22: Structure and Equipment Isolation,” Vibration and Shock Handbook, edited by C. W. de Silva, CRC Press, Taylor & Francis Group, 2005.
[7] 盧煉元、鍾立來「國內外結構控制技術之進展」,土木技術(防災科技專題),四月號,第14期,81-95頁,1999。
[8] Lu, L. Y., Lee, T. Y., Juang, S. Y., Yeh, S. W., “Polynomial friction pendulum isolators (PFPIs) for building floor isolation: an experimental and theoretical study.” Engineering Structures, Vol. 56, 970-982, 2013.
[9] 盧煉元、施明祥、曾旭玟、吳政彥,「滑動隔震支承之研發與其受近斷層震波行為之實驗探討」,結構工程,第二十卷,第三期,29-59頁,2005。
[10] Lu, L.Y., Shih, M.H., Wu, C.Y., “Near-Fault Seismic Isolation Using Sliding Bearings with Variable Curvatures,” Proceedings of the 13th World Conference on Earthquake Engineering, August 1-6, Vancouver, BC, Canada, Paper no. 3264, 2004.
[11] 盧煉元、李姿瑩、葉奕麟、張洵,「變頻式搖擺支承於近域隔震之運用」,中國土木水利工程學刊,第二十二卷第三期,283-298,2010。
[12] Lu, L. Y., Lee, T. Y., Yeh, S. W., “Theory and experimental study for sliding isolators with variable curvature” Earthquake Engineering and Structural Dynamics, Vol. 40, No. 14, 1609-1627, 2011.
[13] Jangid, R.S, “Optimum friction pendulum system for near-fault motions.” Engineering Structures, Vol.27, No.3, 349-359, 2004
[14] 盧煉元、施明祥、張婉妮,「近斷層震波對滑動式隔震結構之影響評估」,結構工程,第十八卷,第四期,第23-48頁,2003。
[15] Priestley, M.J.N., Seible, F. and Calvi, G.M., “Seismic Design and Retrofit of Bridges,” John Wiley & Sons, Inc. New York, 1996.
[16] 莊玟珊,「PSO–SA 混合搜尋法與其他結構最佳化設計之應用」,國立中央大學土木工程學系碩士論文,2007。
[17] Lu, L. Y., Shih, M. H. , and Wu, C. Y.. “Near-fault seismic isolation using sliding bearings with variable curvatures.” 13th World Conference on Earthquake Engineering, Vancouver, Canada, No. 3264, 2004.
[18] 吳政彥 「變曲率滑動隔震結構之實驗與分析」,高雄第一科技大學營建工程系碩士論文,2004。
[19] Lu, L. Y., Shih, M. H., and Wu, C. Y. “SLIDING ISOLATION USING VARIABLE FREQUENCY BEARINGS FOR NEAR-FAULT GROUND MOTIONS.” 4th International Conference on Earthquake Engineering, Taipei, Taiwan, No. 164, 2006.
[20] 盧煉元,吳政彥,葉奕麟 ,「圓錐形摩擦單擺支承之隔震應用研究」結構工程,二十四卷,第二期,91-116頁,2009。(NSC 94-2625-Z-327-004)
[21] 王健,「變曲率滑動隔震防制近斷層震波之實驗與分析」,高雄第一科技大學營建工程系碩士論文,2006。
[22] 董佩宜,「應用多項式摩擦單擺支承之隔震橋梁研究」,國立中央大學土木系碩士論文,2010。
[23] 方嬿甄,「考量垂直效應之多項式摩擦單擺支承之分析與設計」,國立中央大學土木系碩士論文,2011。
[24] 曹哲瑋,「應用多項式摩擦單擺支承於不等高橋梁之研究」,國立中央大學土木系碩士論文,2016。
[25] Lee, T.Y., Chung, K.J. and Chang, H., “A new procedure for nonlinear dynamic analysis of structures under seismic loading based on equivalent nodal secant stiffness, ” International Journal of Structural Stability and Dynamics, 18(3), 1850043, 2018.
[26] Lee, T.Y., Chung, K.J. and Chang, H., “A new implicit dynamic finite element analysis procedure with damping included.” Engineering Structures, 147, 530-544, 2017.
[27] 鍾昆潤,「非耦合隱式動力有限元素分析及其於結構崩塌分析之應用」,國立中央大學土木系博士論文,2018。
[28] Klaus- Jürgen Bathe , Mirza M. Irfan Baig, “On a composite implicit time integration procedure for nonlinear dynamics “ Computers and Structures, 2005.
[29] Klaus- Jürgen Bathe , “Conserving energy and momentum in nonlinear dynamics:A simple implicit time integration scheme” Computers and Structures, 2007
[30] Klaus-Jürgen Bathe,Gunwoo Noh. , “Insight into an implicit time integration scheme for structural dynamics” Computers and Structures, 2012
[31] 王亮偉,「變曲率滑動隔震系統於三維震波作用下之實驗與理論研究」 ,國立成功大學土木系碩士論文,2016。
[32] Kennedy, J. and Eberhart, R. C. “Particle Swarm Optimization,” Proceedings of IEEE International Conference on Neural Networks , 1942-1948, 1995.
[33] Eberhart, R. C. and Kennedy, J., “A new optimizer using particle swarm theory.” Proceedings of the Sixth International Symposium on Micro machine and Human Science, Nagoya, Japan, 39-43, 1995.
[34] Eberhart, R. C. and Shi, Y. H., “Particle swarm optimization: developments, applications and resources.” Proceedings of IEEE International Conference on Evolutionary Computation, Seoul, Korea, vol. 1, 81-86, 2001.
[35] Fourie, R. C. and Groenwould, A. A., “The particle swarm optimization algorithm in size and shape optimization.” Structural and Multidisciplinary Optimization, 23, 259-267, 2002.
[36] Kirkpatrick, S. ,Gelatt, C. D., and Vecchi, M. P., “Optimization by Simulated Annealing.” Science, 220, No. 4598, 671-680, 1983.
[37] Corana, A., Maechesi, M.,Martini, C., and Ridella, S., “Minimizing Multimodal Functions of Continuous Variables with the Simulated Annealing Algorithm.” ACM Transactions on Mathematical Software, 13(3), 262-280., 1987
[38] 黃麟翔,「含變頻滑動支承及抗拉拔裝置之不等高橋梁實驗」,國立中央大學土木系碩士論文,2020。
[39] 王聖文,「含結構阻尼之三維非線性動力歷時分析」,國立中央大學土木系碩士論文,2020。
[40] Loh, C. S., “Interpretation of structural damage in 921 Chi-Chi-earthquake.” International Workshop on 921 Chi-Chi Earthquake Reconnaissance, Dec. 14-17, Taichung, Taiwan, 1999.
[41] Hall, J. F., Heaton, T. H., Halling, M. W., and Wald, D. J., “Near-Source Ground Motion and its Effects on Flexible Buildings.” Earthquake Spectra, 11(4), 569-606, 1995.
[42] Makris N. and Chang, S. P., “Effect of Damping Mechanisms on the Response of Seismically Isolated Structures.” Report No. PEER-98/06, Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, 1998.
[43] Liao, W. I., Loh, C. H. and Wan, S. ,“Responses of isolated bridges subjected to near-fault ground motions recorded on Chi-Chi earthquake.” International Workshop on Annual Commemoration of Chi-Chi Earthquake, Sep. 18-20, Taipei, 371-380, 2000.
[44] 張婉妮,「近斷層震波對滑動隔震結構之影響」,高雄第一科技大學營建工程系碩士論文,2001。
[45] J. S. Przemieniecki, “Theory of matrix structural analysis”, Dover Publications, Inc. , New York, 2012. 
指導教授 李姿瑩(Tzu-Ying Lee) 審核日期 2022-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明