博碩士論文 107621010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:18.219.228.88
姓名 張兆庠(Chao-Hsiang Chang)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 利用系集預報探討台灣地形對颱風利奇馬(2019)的影響
相關論文
★ 雲微物理參數化法應用於颱風模式中之研究★ 1998年臺灣梅雨個案模擬及其應用 -蘭陽平原之擴散研究
★ 地形對颱風路徑的影響之數值探討★ 中尺度MM5數值模式與大氣擴散模式之整合應用研究
★ 侵台颱風之GPS折射率3DVAR資料同化及數值模擬★ 地形及渦旋初始化對類似納莉颱風路徑及環流變化之影響
★ 類似桃芝颱風路徑之模擬★ WRF模式在颱風路徑預報應用與EOF分析誤差因素
★ 利用WRF3DVAR同化GPS折射率資料探討 對於颱風預報的影響★ 衛星資料結合變分分析對數值預報之影響
★ 利用MM5 4DVAR模式同化掩星折射率資料及虛擬渦旋探討颱風數值模擬之影響★ 利用MM5 4DVAR同化虛擬渦旋探討其對WRF模式預報颱風之影響
★ GPS掩星觀測資料同化及對區域天氣預報模擬之影響★ 西北向侵台颱風登陸前中心路徑打轉之模擬研究
★ 衛星資料與虛擬渦旋四維變分同化對颱風數值模擬的影響★ 資料同化對台灣地區颱風和梅雨模擬之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用MPAS (Model for Prediction Across Scalses-Atmosphere)全球預報模式進行模擬,解析度為60-15-3公里可變解析度全球網格,在有興趣之區域解析度為3公里,此全球網格配置好處在於無邊界條件問題。本篇研究主要探討利奇馬颱風在2019年8月8日至9日在臺灣北部近海出現之路徑向北偏折現象。前人研究中有使用中央氣象局版的全球模式FV3GFS成功模擬出此颱風路徑偏折之現象,但由於初始場具有不確定性,因此一組誤差小的模擬結果有可能為隨機偶然事件。因此本篇研究將初始場進行渦漩初始化,改善初始場颱風強度後,再進一步產生20組系集擾動初始場,並進行120小時之長預報。預報結果顯示整體系集預報在颱風接近臺灣地形時路徑變得相當發散(有登陸臺灣再進入閩南一帶,也有在琉球一帶就北轉),可知此時路徑預報不確定性相當高,而本篇選用系集預報中與最佳路徑誤差較小的幾組系集成員(分別為M03、M06、M09)和控制組進行分析討論,其中M03路徑誤差雖然小,但路徑偏折角度比最佳路徑小,而M06、M09誤差小且還能大致掌握路徑偏折。而在強度的部分,各系集皆反應出利奇馬颱風在接近台灣時顯著增強的情況,因此可判斷出此時強度不確定性較低。
進一步分析颱風環流結構,發現控制組和三組系集成員皆有接近台灣產生繞流,由颱風中心南側流入颱風東側內核區,使颱風東側風場增強,加大風場不對稱,使其路徑相較於移除地形時的路徑有偏北的情況。由有、無地形時的波數一風場之差異可以發現,主要為繞行渦漩中心的一對迴流(gyre),而其原本位於颱風東西側,再透過颱風風場平流後移至颱風南北側,造成颱風移動先往北再往西。接著透過角動量及動能收支探討當颱風靠近地形逐漸增強時,各項之變化,由角動量結果可推斷出水平平流項和颱風強度最具關連性,其原因為當低層入流增強時,將會使低層水平平流項正貢獻增強,有利於颱風增強。而在動能收支中,則為平均徑項壓力梯度力功率項與強度較為相關。最後,我們再經過位渦收支分析,了解路徑偏折情況發生時,位渦極大值方向,乃由西北至北北西,轉為西北西至西北,此與移動方向變化一致。此利奇馬颱風模擬結果與其路徑偏折機制,與前人使用CWB FV3GFS 模擬比較相當一致,顯示利奇馬颱風鄰近台灣時路徑偏折,係受到台灣地形作用的影響所致。
摘要(英) The Model for Prediction Across Scales (MPAS) is the nonhydrostatic global atmosphere model developed by National Center for Atmospheric Research (NCAR). This study uses a variable-resolution mesh of 60-15-3 km with 3-km resolution targeted on Taiwan’s vicinity to simulate Typhoon Lekima. When approaching Taiwan from the southeast during 8th to 9th August 2019, the typhoon began to deflect northward. We have used FV3GFS to successfully capture the observed northward track deflection, but the deflection may be randomly induced because of the predictability with the initial uncertainty. This study uses dynamical vortex initialization (DVI) to enhance the initial typhoon intensity and then adds perturbations to the initial 20 ensemble members for 120-h forecast. The forecast results show the spreading of ensemble tracks when Typhoon Lekima approaches northern Taiwan. Three members with smaller track errors are chosen for dynamic analysis, two of wich can further capture the observed track deflection.
The movement of Lekima is dominated by a pair of gyres around the typhoon center in the asymmetric wavenumber-one flow difference between the simulated flow fields with and without Taiwan terrain, which tends to counterclockwise rotate the vortex motion vector, first northward and then westward. Potential vorticity budget is analyzed to investigate the dynamics of the evolving typhoon and help explain the track deflection. Asymmetric decomposition of PV tendency budget highlights the relative importance of dynamic forcing terms in the PV tendency in steering the typhoon movement with induced track deflection. The track deflection is mainly dictated by wavenumber-1 PV horizontal advection with northward tendency, while vertical advection and differential diabatic heating only have minor impacts. The track deflection mechanism of Lekima as explored by MPAS in this study is in agreement with that obtained from the global FV3GFS simulations in our earlier study, as a manifest result of the topographic effects of Taiwan terrain.
關鍵字(中) ★ 利奇馬
★ MPAS
★ 路徑偏折
★ 位渦分析
關鍵字(英) ★ Typhoon Lekima
★ Track deflection
★ MPAS
★ PV tendency budget
論文目次 摘要 I
致謝 V
目錄 VI
表目錄 VII
圖目錄 VII
一、前言 1
二、模式設定與使用資料 5
三、實驗設計與方法 6
3-1 利奇馬颱風概述 6
3-2 實驗設計 7
3-3 渦旋初始化方法 8
3-4 位渦趨勢收支分析 10
3-5 角動量收支(Angular momentum budget) 11
3-6 動能收支(Kinetic energy budget) 12
四、MPAS模擬結果 15
4-1 系集模擬結果 15
4-2 參數化敏感性實驗 16
4-3 移除地形敏感性實驗 16
4-4 角動量收支分析 20
4-5 動能收支分析 24
4-6 位渦收支分析 29
五、結論 30
參考文獻 33
附表 36
圖表 37
參考文獻 蘇胤瑞,2017:颱風渦旋初始化對全球模式MPAS模擬之影響。國立中央大學,大氣物理研究所,碩士論文。
陳舒雅,2008: GPS 掩星觀測資料同化及對區域天氣預報模擬之影響。國立中央大學,大氣物理研究所,博士論文。
黃建翔,2018:侵臺颱風之高解析度全球模式模擬研究,國立中央大學,大氣物理所,碩士論文。
阮子齊,2019:利用高解析度全球模式 FV3GFS 探討侵台颱風瑪莉亞(2018)受地形影響之路徑偏折。國立中央大學,大氣物理研究所,碩士論文。
林家洋,2020:渦旋動力初始化方案應用於全球高解析度模式 MPAS之颱風模擬,國立中央大學,大氣物理所,碩士論文。
沙聖浩,2021:颱風利奇馬Lekima (2019)通過台灣的數值研究:地形對不同颱風路徑的影響。國立中央大學,大氣物理所,碩士論文。
Bender, M. A., R. J. Ross, R. E. Tuleya, and Y. Kurihara, 1993: Improvementtropical cyclone track and intensity forecasts using the GFDL initialization system. Mon. Wea. Rev., 121, 2046-2061.
Cha, D.-H., and Y. Wang, 2013: A dynamical initialization scheme for real-time forecasts of tropical cyclones using the WRF Model. Mon. Wea. Rev., 141, 964–986.
Chan, J. C., F. M. Ko, and Y. M. Lei, 2002: Relationship between potential vorticity tendency and tropical cyclone motion. J. Atmos. Sci., 59, 1317–1336.
Nguyen, H. V., and Y.-L. Chen, 2011: High-resolution initialization and simulations of typhoon Morakot (2009). Mon. Wea. Rev., 139, 1463-1491.
Nguyen, H. V., and Y.-L. Chen, 2014: Improvements to a tropical cyclone initialization scheme and impacts on forecasts. Mon. Wea. Rev., 142, 4340-4356.

Chan, K. T., and J. C. Chan, 2013: Angular momentum transports and synoptic flow patterns associated with tropical cyclone size change. Mon. Wea. Rev., 141, 3985-4007.
Chou, K. H., C. C. Wu, and Y. Wang, 2011: Eyewall evolution of typhoons crossing the Philippines and Taiwan: An observational study. Terr. Atmos. Ocean. Sci., 22, 535-548
Huang, C.-Y., C.-H. Huang, and W. C. Skamarock, 2019: Track deflection of typhoon nesat (2017) as realized by multi-resolution simulations of a global model. Mon. Wea. Rev. 147, 1593-1613.
Huang, C.-Y., T.-C. Juan, H.-C. Kuo, and J.-H. Chen, 2020: Track deflection of Typhoon Maria (2018) during a westbound passage offshore of northern Taiwan: Topographic influence. Mon. Wea. Rev., 148, 4519-4544.
Huang, Y., C. Wu, and Y. Wang, 2011: The influence of island topography on typhoon track deflection. Mon. Wea. Rev., 139, 1708–1727.
Huang, C.-Y., C.-A. Chen, S.-H. Chen, and D. S. Nolan, 2016: On the upstream track deflection of tropical cyclones past a mountain range: Idealized experiments. J. Atmos. Sci., 73, 3157-3180.
Huang, C.-Y., Y. Zhang, W. C. Skamarock, and L.-H. Hsu, 2017: Influences of large-scale flow variations on the track evolution of Typhoons Morakot (2009) and Megi (2010): Simulations with a global variable-resolution Model. Mon. Wea. Rev., 145, 1691-1716.
Huang, C.-Y., C.-H. Huang, and W. C. Skamarock, 2019: Track deflection of Typhoon
Nesat (2017) as revealed by multiresolution simulations of a global model.
Mon. Wea. Rev., 147, 1593-1613. DOI: 10.1175/MWR-D-18-0275.1.
Huang, C.-Y., S.-H. Sha, and H.-C. Kuo, 2022: A modeling study of Typhoon Lekima (2019) with the topographic influence of Taiwan. Mon. Wea. Rev., DOI 10.1175/MWRD-21-0183.1.
Jian, G.-J., and C.-C. Wu, 2008: A numerical study of the track deflection of Supertyphoon Haitang (2005) prior to its landfall in Taiwan. Mon. Wea. Rev., 136, 598–615
Lin, Y.-F.; Wu, C.-C.; Yen, T.-H.; Huang, Y.-H.; Lien, G.-Y. Typhoon Fanapi (2010) and its Interaction with Taiwan Terrain-Evaluation of the Uncertainty in Track, Intensity and Rainfall Simulations. J. Meteorol. Soc. Jpn. 2020, 98, 93–113.
Tang, C.-K., and J.C.-L. Chan, 2014: Idealized simulations of the effect of Taiwan and Philippines topographies on tropical cyclone tracks, Q. J. R. Meteorol. Soc. 140: 1578– 1589.
Wang, Y., 2002: Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity and kinetic energy budgets. J. Atmos. Sci., 59, 1213–1238.
Wu, L., and B. Wang, 2000: A potential vorticity tendency diagnostic approach for tropical cyclone motion. Mon. Wea. Rev., 128, 1899–1911
Wu, C.-C., T.-H. Li, and Y.-H. Huang, 2015: Influence of mesoscale topography on tropical cyclone tracks: Further examination of the channeling effect. J. Atmos. Sci., 72, 3032–3050.
指導教授 黃清勇(Ching-Yuang Huang) 審核日期 2022-6-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明