博碩士論文 108322090 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.138.155.159
姓名 謝昆祐(Kun-Yu Hsieh)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 以SHALSTAB為基礎之土壤-裂隙雙層情境之新型崩塌模式
相關論文
★ 評估不同數值地型資料於降雨型崩塌作用模式之應用性-以小尺度坡面之崩塌事件為例★ 應用最大熵法於蒙古山區進行森林樹種分類
★ 利用Landsat衛星影像監測並預測中美洲瓜地馬拉首都–瓜地馬拉市之都市發展★ 都市化與發展:對海地永續發展之意涵
★ 客家文化重點發展區之客家政策研究:以龍潭大池整體環境規劃與營造計畫為例★ 利用多時期Landsat衛星影像進行森林砍伐之評估 -以尼加拉瓜波沙瓦生態保護區為例
★ 融合光學衛星影像及地形資訊進行崩塌地之判釋★ 應用Sentinel-1 SAR影像進行水稻監測-以泰國中部大城府省為例
★ 都市三維結構變遷之分析-以臺灣臺北市為例★ 應用 Sentinel-1 合成孔徑雷達資料進行地層下陷監測 - 以 2017 年泰國曼谷都 會區為例
★ 利用人工神經網絡模型建立多事件為基礎之崩塌模型-以台灣玉山國家公園為例★ 應用衛星影像於都市發展之監測與預測 ─以台灣桃園為例
★ 分析降雨及不透水面對台南水患發生之影響★ 應用Google Earth Engine與影像分類技術於巴拉圭查科地區進行森林砍伐評估
★ 應用多時期Sentinel-1 合成孔徑雷達影像進行崩塌及淹水偵測-以印尼爪哇島Pacitan地區為例★ 母岩裸露指標之建立並應用於崩塌判釋與監測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 降雨所誘發的淺層崩塌不僅是重要的地形作用,更是嚴重的自然災害。這種崩塌的成因通常為降雨入滲至不飽和土壤,使得土壤的有效應力減少、剪力強度降低,而土石因受重力牽引,自斜坡上滑落,形成淺層崩塌。在淺層崩塌的潛勢分析中,物理機制模式 (physically based model) 是種常見的分析方法,其中最早提出之SHALSTAB模式結合了水文模式以及邊坡穩定模式,並在許多崩塌潛勢分析的研究中有著不錯的成果。SHALSTAB模式盡管已在許多研究中被採用,但其假設破壞面位於土壤與基岩的交界面,且地下水也累積於此交界面上。然而,這樣的假設可能會忽略土壤與基岩裂縫中流動的裂縫流 (fracture flow) 對於邊坡穩定所帶來的影響。因此,本研究假設 (1) 單層土壤發生崩塌 (2) 雙層結構,僅上層發生崩塌 (3) 雙層結構,上、下層皆發生崩塌,三種不同的破壞情境,並透過這三種不同的破壞情境建構崩塌模式。與此同時,八流向演算法 (Eight flow direction, D8) 、多流向演算法 (Multiple flow direction, MFD) 、無限流向演算法 (Infinity flow direction, D∞) 以及整合單流向與多流向演算法所發展出的阿爾法流向演算法 (Alpha flow direction, Dα)等四種不同的流向演算法,也將應用於研究之中。本次研究以台灣南部的荖濃溪之一子集水區為研究區域,此處於2009年遭受莫拉克颱風的襲擊,隨後發生的崩塌與土石流事件更是嚴重地影響當地的住戶。模式最後的模擬成果將與崩塌目錄進行比對,並透過修正成功率 (Modified Success Rate, MSR) 進行量化,藉此評估各模式的預測準確性。結果顯示,在三種情境中,情境二的預測結果最佳,情境一次之,情境三則較差,代表「雙層結構,僅上層發生崩塌」的假設,確實能改善分析成果。此外,在情境二的分析成果中,MSR值最高者為情境二搭配Dα法 (75.49 %),D8法次之 (75.10 %),MFD法第三 (74.99 %),D∞法則最低 (74.51 %),代表流向演算法也具有影響崩塌分析結果可能性。
摘要(英) Rainfall-induced shallow landslides are not only important geomorphic processes but also natural hazards. These landslides are commonly caused by the transient infiltration into initially unsaturated soils and can cause the debris flows mixed with subsurface flow. For shallow landslide susceptibility analysis, physically-based models have been developed, and SHALSTAB is one of the commonly used physically-based models, integrating a hydrologic model and a slope stability model to predict slopes prone to landslides. SHALSTAB assumes that the failure plane is located at the interface between soil and bedrock, and the groundwater is also accumulated at the soil-bedrock interface. However, this assumption may neglect the fracture flow within soil-bedrock fractures, which may also significantly influence the slope stability. Therefore, this study assumes three different failure scenarios: (1) single-layer model (2) double-layer model with middle failure plane (3) double-layer model with bottom failure plane. Meanwhile, four different flow-direction algorithms, including D8, MFD, D∞ and Dα have been applied in the landslide model. The study area is located at Laonung watershed in southern Taiwan, which was hit by Typhoon Morakot in 2009, and landslide and debris flow events severely affected the local settlements. Finally, the prediction results were compared with the landslide inventory, and this study assesses the model performance of different experiments using Modified Success Ratio analysis, to examine the validity of implementing the fracture flow in a physically-based landslide model in the study site. The results show that scenario 2 with applying flow algorithm Dα has the best prediction result, which indicates the validity of incorporating fracture flow in a physically-based model.
關鍵字(中) ★ 淺層崩塌
★ 物理機制模式
★ SHALSTAB
★ 裂縫流
★ 流向演算法
★ 修正成功率
關鍵字(英) ★ shallow landslide
★ physically-based model
★ SHALSTAB
★ fracture flow
★ flow-direction algorithms
★ Modified success ratio
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 IX
第一章 緒論 1
1-1. 研究背景及動機 1
1-2. 研究目的 2
1-3. 論文架構 3
第二章 文獻回顧 4
2-1. 崩塌之成因與型態分類 4
2-2. 崩塌潛勢分析 8
2-3. 地表下水流對崩塌的影響 10
2-4. 裂縫流之相關研究 11
2-5. 流向演算法於崩塌模式之應用 13
2-6. 小結 14
第三章 研究方法 15
3-1. SHALSTAB模式與破壞情境 17
3-1-1. 破壞情境一 17
3-1-2. 破壞情境二 20
3-1-3. 破壞情境三 21
3-2. 流向演算法 22
3-2-1. 八流向演算法 (Eight flow-direction, D8) 23
3-2-2. 多流向演算法 (Multiple flow-direction, MFD) 23
3-2-3. 無限流向演算法 (Infinity flow-direction, D∞) 24
3-2-4. 阿爾法流向演算法 (Alpha flow-direction, Dα) 26
第四章 資料蒐集與處理 28
4-1. 研究區域與颱風事件 28
4-2. 資料蒐集 31
4-2-1. 坡度與集流面積 32
4-2-2. 植根凝聚力 34
4-2-3. 地形曲率與土壤厚度 36
4-2-4. 雨量資料 38
4-2-5. 崩塌目錄 40
4-3. 參數值域與敏感度分析 41
4-3-1. 厚度之敏感度分析 43
4-3-2. 滲透係數之敏感度分析 44
4-3-3. 抗剪摩擦角與有效凝聚力之敏感度分析 45
4-3-4. 通體密度之敏感度分析 48
4-3-5. 參數間距之決定 49
第五章 研究成果 52
5-1. 模式成果評估 52
5-2. 崩塌機率分佈 53
5-3. 崩塌預測分佈 58
第六章 研究討論 61
6-1. 參數值分佈 61
6-2. 臨界降雨分佈 66
6-3. 資料品質之影響 71
第七章 結論與建議 72
參考文獻 74
參考文獻 李嶸泰、張嘉琪、詹勳全、廖珮妤、洪雨柔 (2012)。應用羅吉斯迴歸法進行阿里山地區山崩潛勢評估。中華水土保持學報,43 (2),167-176。
何弘竹 (2020)。應用邏輯斯迴歸整合土壤含水量與臨界降雨之崩塌預測模式-以高屏溪流域為例。國立中央大學土木工程研究所碩士論文。
何秋燕、詹錢登、楊思堯 (2017)。應用證據權重法評估土石流發生潛勢-以高屏溪流域為例。中華水土保持學報,48 (2),92-100。
吳宗曄 (2004)。空間資料探勘與知識產生-以建立崩坍敏感性評估模式為例。國立臺灣大學地理環境資源學系碩士論文。
吳俊鋐 (2014)。以崩塌率為依據建構邏輯式迴歸崩塌潛勢評估模式。中華水土保持學報,45 (4),257-265。
吳俊鋐 (2015)。崩塌率為依據邏輯式迴歸法、頻率比法及證據權重法於崩塌潛勢模式應用之比較。臺灣水利,64 (1),47-61。
吳俊鋐、陳樹群 (2004)。崩塌潛勢預測方法於臺灣適用性之初探。中華水土保持學報,36 (4),295-306。
林繼煒 (2018)。應用邏輯斯迴歸於崩塌時間與空間預測的探討。國立彰化師範大學地理學系碩士論文。
邱惠靖、陳天健、楊婉君 (2014)。崩塌流體化地形之判釋分析模式。2014年中華水土保持學術研討會。
財團法人中興工程顧問社 (2009)。集水區水文地質對坡地穩定性影響之調查評估計畫。經濟部中央地質調查所委託報告書。
莊永忠、廖學誠、詹進發、黃正良 (2007)。不同網格解析度與流向演算法對蓮華池集水區地形指標之影響。地理學報,50,73-100。
張弼超 (2005)。運用羅吉斯迴歸法進行山崩潛感分析-以臺灣中部國姓地區為例。國立中央大學應用地質研究所碩士論文。
陳靜茹 (2019)。降雨誘發深淺層崩塌之潛勢分析。國立中興大學土木工程學系所碩士論文。
馮豐隆、高堅泰 (1999)。應用克立金推估模式於降雨製圖。台大實驗林研究報告,13(2),155-163。
楊明德、黃奕達、黃凱翔、張益祥 (2012)。利用崩塌潛勢圖作風險評估之應用-以陳有蘭溪流域為例。中華水土保持學報,43 (1),1-11。
詹勳全、張嘉琪、陳樹群、魏郁軒、王昭堡、李桃生 (2015)。台灣山區淺層崩塌地特性調查與分析。中華水土保持學報,46 (1),19-28。
楊樹榮、林忠志、鄭錦桐、潘國樑、蔡如君、李正利 (2011)。臺灣常用山崩分類系統。第14屆大地工程研討會。
劉宜君、陳樹群 (2018)。結合土壤雨量指數與頻率比法建構坡地災害潛勢模式。中華水土保持學報,49 (4),243-253。
賴進貴、王慧勳 (1996)。數值等高線內插之比較研究、國立臺灣大學地理學系地理學報,21,83-94。
賴哲儇、蔡富安、姜壽浩 (2017)。廣域崩塌潛勢模型的空間分析。航測及遙測學刊,22 (2),93-104。
鍾欣翰 (2008)。考慮水文模式的地形穩定分析-以匹亞溪集水區為例。國立中央大學應用地質研究所碩士論文。
簡李濱 (1992)。應用地理資訊系統建立坡地安定評估之計量方法。國立中興大學土木工程研究所碩士論文。
Baum, R. L., Savage, W. Z., and Godt, J. W. (2002). TRIGRS—A FORTRAN program for transient rainfall infiltration and grid-based regional slope-stability analysis: U.S. Geological Survey, 61 (Open-File Report 02-0424).
Beven, K. J., Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Journal, 24 (1), 43-69.
Chang, K. T., Chiang, S. H. (2009). An integrated model for predicting rainfall-induced landslides. Geomorphology, 105, 366-373.
Chang, K. T., Chiang, S. H., Chen, Y. C., Mondini, A. C. (2014). Modeling the spatial occurrence of shallow landslides triggered by typhoons. Geomorphology, 208, 137-148.
Chiang, S. H. (2010). Modeling Multi-Hazards: Landslide Initiation and Debris Flow. Ph.D. Dissertation, Department of Geography, National Taiwan University.
Conoscenti, C., Ciaccio, M., Caraballo-Arias, N. A., Gómez-Gutiérrez, Á., Rotigliano, E., Agnesi, V. (2015). Assessment of susceptibility to earth-flow landslide using logistic regression and multivariate adaptive regression splines: a case of the Belice River basin (western Sicily, Italy). Geomorphology, 242, 49-64.
Dai, F. C., Lee, C. F. (2002). Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 42, 213-228.
Dietrich, W. E., Reiss, R., Hsu, M. L., Montgomery, D. R. (1995). A process‐based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological Processes, 9, 383-400.
Dietrich, W. E., Montgomery, D. R. (1998). SHALSTAB: a digital terrain model for mapping shallow landslide potential. University of California.
Freeman, T. G. (1991). Calculating catchment area with divergent flow based on regular grid. Computers & Geosciences, 17(3), 413-422.
Heimsath, A. M., Dietrich, W. E., Nishiizumi, K., Finkel, R. C. (1997). The soil production function and landscape equilibrium. Nature, 338, 358-361.
Holmgren, P. (1994). Multiple flow directions algorithms for runoff modelling in grid based elevation models: An empirical evaluation. Hydrological Processes, 8, 327-334.
Huang, J. C., Kao, S. J. (2006). Optimal estimator for assessing landslide model efficiency. Hydrology and Earth System Sciences Discussions, 3, 1125-1144.
Huang, J. C., Kao, S. J., Hsu, M. L., Lin, J. C. (2006). Stochastic procedure to extract and to integrate landslide susceptibility maps: an example of mountainous watershed in Taiwan. Natural Hazards and Earth System Sciences, 6, 803-815.
Kim, M. S., Onda, Y., Uchida, T., Kim, J. K. (2016). Effects of soil depth and subsurface flow along the subsurface topography on shallow landslide predictions at the site of a small granitic hillslope. Geomorphology, 271, 40-54.
Kim, S. W., Kim, M. S., An, H. U., Chun, K. W., Oh, H. J., Onda, Y. (2019). Influence of subsurface flow by Lidar DEMs and physical soil strength considering a simple hydrologic concept for shallow landslide instability mapping. Catena, 182, 104137.
Lee, S., Choi, J., Woo, I. (2004). The effect of spatial resolution on the accuracy of landslide susceptibility mapping: a case study in Boun, Korea, Geosciences Jounral, 8(1), 51-60.
Lee, S., Talib, J. A. (2005). Probabilistic landslide susceptibility and factor effect analysis. Environmental Geology, 47 (7), 982-990.
Michel, G. P., Kobiyama, M., Goerl, R. F. (2014). Comparative analysis of SHALSTAB and SINMAP for landslide susceptibility mapping in the Cunha River basin, southern Brazil. Journal of Soils and Sediments, 14 (7), 1266-1277.
Mondini, A. C., Chang, K. T., Yin, H. Y. (2011). Combing multiple change detection indices for mapping landslides triggered by typhoons. Geomorphology, 134 (3-4), 440-451.
Montgomery, D. R., Dietrich, W. E. (1994). A physically based model for the topographic control on shallow landsliding. Water Resources Research, 30 (4), 1153-1171.
Montgomery, D. R., Dietrich, W. E., Torres, R., Anderson, S. P., Heffner, J. T., Loague, K. (1997). Hydrologic response of a steep, unchanneled valley to natural and applied rainfall. Water Resources Research, 33(1), 91-109.
Montgomery, D. R., Sullivan, K., Greenberg, H. M. (1998). Regional test of a model for shallow landsliding. Hydrological Processes, 12, 943-955.
Moore, I. D., Grayson, R. B., Landson, A. R. (1991). Digital terrain modeling: a review of hydrological, geomorphological, and biological applications. Hydrological Process, 5, 3-30.
O’Callaghan, J. F., Mark, D. M. (1984). The Extraction of Drainage Networks from Digital Elevation Data. Computer Vision, Graphics and Image Processing, 28, 328-344.
O’loughlin, E. M. (1981). Saturation regions in catchments and their relations to soil and topographic properties. Journal of Hydrology, 53, 229-246.
O’loughlin, E. M. (1986). Prediction of surface saturation zones in natural catchments by topographic analysis. Water Resources Research, 22(5), 794-804.
Onda, Y., Tsujimura, M., Tabuchi, H. (2004) The role of subsurface water flow paths on hillslope hydrological processes, landslides and landform development in steep mountains of Japan. Hydrological Processes, 18, 637-650.
Pack, R. T., Tarboton, D. G., Goodwin, C. N. (1998). The SINMAP approach to terrain stability mapping. 8th Congress of the International Association of Engineering Geology, Vancouver, British Columbia.
Palamakumbure, D., Flentje, P., Stirling, D. (2015). Consideration of optimal pixel resolution in deriving landslide susceptibility zoning within the Sydney Basin, New South Wales, Australia, Computers & Geosciences, 82(2015), 13-22.
Quinn, P. F., Beven, K. J., Chevallier, P., Planchon, O. (1991). The prediction of hillslope flow paths for distributed hydrological using digital terrain models. Hydrological Process, 5, 59-79.
Santacana, N., Baeza, B., Corominas, J. (2003). A GIS-Based Multivariate Statistical Analysis for Shallow Landslide Susceptibility Mapping in La Pobla de Lillet Area (Eastern Pyrenees, Spain). Natural Hazards, 30, 281-295.
Tarboton, D. G. (1997). A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resource Research, 33, 309-319.
United States Geological Survey (2014). Landslide Types and Process. https://pubs.usgs.gov/fs/2004/3072/fs-2004-3072.html
Van Westen, C. J., Rengers, N., Soeters, R. (2003). Use of geomorphological information in indirect landslide susceptibility assessment. Nat. Hazards, 30, 399-419.
Varnes, D. J. (1978). Slope movement types and processes: In Landslides, Analysis and Control. Nat. Acad. Sci. Spec. Rep., 176, 11-35.
Vieira, B.C., Fernandes, N.F., Augusto Filho, O., Montgomery, D. R. (2018). Assessing shallow landslide hazards using the TRIGRS and SHALSTAB models, Serra do Mar, Brazil. Environmental Earth Sciences, 77(6), 1-15.
Wilson, C. J., Dietrich, W. E. (1987). The contribution of bedrock groundwater flow to storm runoff and high pore pressure development in hollows. IAHS-AISH publ., 165, 49-59.
Wolock, D. M., McCabe Jr., G. J. (1995). Comparison of single and multiple flow direction algorithms for computing topographic parameters in TOPMODEL, Water Resources Research, 31 (5), 1315-1324.
指導教授 姜壽浩(Shou-Hao Chiang) 審核日期 2022-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明