參考文獻 |
李嶸泰、張嘉琪、詹勳全、廖珮妤、洪雨柔 (2012)。應用羅吉斯迴歸法進行阿里山地區山崩潛勢評估。中華水土保持學報,43 (2),167-176。
何弘竹 (2020)。應用邏輯斯迴歸整合土壤含水量與臨界降雨之崩塌預測模式-以高屏溪流域為例。國立中央大學土木工程研究所碩士論文。
何秋燕、詹錢登、楊思堯 (2017)。應用證據權重法評估土石流發生潛勢-以高屏溪流域為例。中華水土保持學報,48 (2),92-100。
吳宗曄 (2004)。空間資料探勘與知識產生-以建立崩坍敏感性評估模式為例。國立臺灣大學地理環境資源學系碩士論文。
吳俊鋐 (2014)。以崩塌率為依據建構邏輯式迴歸崩塌潛勢評估模式。中華水土保持學報,45 (4),257-265。
吳俊鋐 (2015)。崩塌率為依據邏輯式迴歸法、頻率比法及證據權重法於崩塌潛勢模式應用之比較。臺灣水利,64 (1),47-61。
吳俊鋐、陳樹群 (2004)。崩塌潛勢預測方法於臺灣適用性之初探。中華水土保持學報,36 (4),295-306。
林繼煒 (2018)。應用邏輯斯迴歸於崩塌時間與空間預測的探討。國立彰化師範大學地理學系碩士論文。
邱惠靖、陳天健、楊婉君 (2014)。崩塌流體化地形之判釋分析模式。2014年中華水土保持學術研討會。
財團法人中興工程顧問社 (2009)。集水區水文地質對坡地穩定性影響之調查評估計畫。經濟部中央地質調查所委託報告書。
莊永忠、廖學誠、詹進發、黃正良 (2007)。不同網格解析度與流向演算法對蓮華池集水區地形指標之影響。地理學報,50,73-100。
張弼超 (2005)。運用羅吉斯迴歸法進行山崩潛感分析-以臺灣中部國姓地區為例。國立中央大學應用地質研究所碩士論文。
陳靜茹 (2019)。降雨誘發深淺層崩塌之潛勢分析。國立中興大學土木工程學系所碩士論文。
馮豐隆、高堅泰 (1999)。應用克立金推估模式於降雨製圖。台大實驗林研究報告,13(2),155-163。
楊明德、黃奕達、黃凱翔、張益祥 (2012)。利用崩塌潛勢圖作風險評估之應用-以陳有蘭溪流域為例。中華水土保持學報,43 (1),1-11。
詹勳全、張嘉琪、陳樹群、魏郁軒、王昭堡、李桃生 (2015)。台灣山區淺層崩塌地特性調查與分析。中華水土保持學報,46 (1),19-28。
楊樹榮、林忠志、鄭錦桐、潘國樑、蔡如君、李正利 (2011)。臺灣常用山崩分類系統。第14屆大地工程研討會。
劉宜君、陳樹群 (2018)。結合土壤雨量指數與頻率比法建構坡地災害潛勢模式。中華水土保持學報,49 (4),243-253。
賴進貴、王慧勳 (1996)。數值等高線內插之比較研究、國立臺灣大學地理學系地理學報,21,83-94。
賴哲儇、蔡富安、姜壽浩 (2017)。廣域崩塌潛勢模型的空間分析。航測及遙測學刊,22 (2),93-104。
鍾欣翰 (2008)。考慮水文模式的地形穩定分析-以匹亞溪集水區為例。國立中央大學應用地質研究所碩士論文。
簡李濱 (1992)。應用地理資訊系統建立坡地安定評估之計量方法。國立中興大學土木工程研究所碩士論文。
Baum, R. L., Savage, W. Z., and Godt, J. W. (2002). TRIGRS—A FORTRAN program for transient rainfall infiltration and grid-based regional slope-stability analysis: U.S. Geological Survey, 61 (Open-File Report 02-0424).
Beven, K. J., Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Journal, 24 (1), 43-69.
Chang, K. T., Chiang, S. H. (2009). An integrated model for predicting rainfall-induced landslides. Geomorphology, 105, 366-373.
Chang, K. T., Chiang, S. H., Chen, Y. C., Mondini, A. C. (2014). Modeling the spatial occurrence of shallow landslides triggered by typhoons. Geomorphology, 208, 137-148.
Chiang, S. H. (2010). Modeling Multi-Hazards: Landslide Initiation and Debris Flow. Ph.D. Dissertation, Department of Geography, National Taiwan University.
Conoscenti, C., Ciaccio, M., Caraballo-Arias, N. A., Gómez-Gutiérrez, Á., Rotigliano, E., Agnesi, V. (2015). Assessment of susceptibility to earth-flow landslide using logistic regression and multivariate adaptive regression splines: a case of the Belice River basin (western Sicily, Italy). Geomorphology, 242, 49-64.
Dai, F. C., Lee, C. F. (2002). Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 42, 213-228.
Dietrich, W. E., Reiss, R., Hsu, M. L., Montgomery, D. R. (1995). A process‐based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological Processes, 9, 383-400.
Dietrich, W. E., Montgomery, D. R. (1998). SHALSTAB: a digital terrain model for mapping shallow landslide potential. University of California.
Freeman, T. G. (1991). Calculating catchment area with divergent flow based on regular grid. Computers & Geosciences, 17(3), 413-422.
Heimsath, A. M., Dietrich, W. E., Nishiizumi, K., Finkel, R. C. (1997). The soil production function and landscape equilibrium. Nature, 338, 358-361.
Holmgren, P. (1994). Multiple flow directions algorithms for runoff modelling in grid based elevation models: An empirical evaluation. Hydrological Processes, 8, 327-334.
Huang, J. C., Kao, S. J. (2006). Optimal estimator for assessing landslide model efficiency. Hydrology and Earth System Sciences Discussions, 3, 1125-1144.
Huang, J. C., Kao, S. J., Hsu, M. L., Lin, J. C. (2006). Stochastic procedure to extract and to integrate landslide susceptibility maps: an example of mountainous watershed in Taiwan. Natural Hazards and Earth System Sciences, 6, 803-815.
Kim, M. S., Onda, Y., Uchida, T., Kim, J. K. (2016). Effects of soil depth and subsurface flow along the subsurface topography on shallow landslide predictions at the site of a small granitic hillslope. Geomorphology, 271, 40-54.
Kim, S. W., Kim, M. S., An, H. U., Chun, K. W., Oh, H. J., Onda, Y. (2019). Influence of subsurface flow by Lidar DEMs and physical soil strength considering a simple hydrologic concept for shallow landslide instability mapping. Catena, 182, 104137.
Lee, S., Choi, J., Woo, I. (2004). The effect of spatial resolution on the accuracy of landslide susceptibility mapping: a case study in Boun, Korea, Geosciences Jounral, 8(1), 51-60.
Lee, S., Talib, J. A. (2005). Probabilistic landslide susceptibility and factor effect analysis. Environmental Geology, 47 (7), 982-990.
Michel, G. P., Kobiyama, M., Goerl, R. F. (2014). Comparative analysis of SHALSTAB and SINMAP for landslide susceptibility mapping in the Cunha River basin, southern Brazil. Journal of Soils and Sediments, 14 (7), 1266-1277.
Mondini, A. C., Chang, K. T., Yin, H. Y. (2011). Combing multiple change detection indices for mapping landslides triggered by typhoons. Geomorphology, 134 (3-4), 440-451.
Montgomery, D. R., Dietrich, W. E. (1994). A physically based model for the topographic control on shallow landsliding. Water Resources Research, 30 (4), 1153-1171.
Montgomery, D. R., Dietrich, W. E., Torres, R., Anderson, S. P., Heffner, J. T., Loague, K. (1997). Hydrologic response of a steep, unchanneled valley to natural and applied rainfall. Water Resources Research, 33(1), 91-109.
Montgomery, D. R., Sullivan, K., Greenberg, H. M. (1998). Regional test of a model for shallow landsliding. Hydrological Processes, 12, 943-955.
Moore, I. D., Grayson, R. B., Landson, A. R. (1991). Digital terrain modeling: a review of hydrological, geomorphological, and biological applications. Hydrological Process, 5, 3-30.
O’Callaghan, J. F., Mark, D. M. (1984). The Extraction of Drainage Networks from Digital Elevation Data. Computer Vision, Graphics and Image Processing, 28, 328-344.
O’loughlin, E. M. (1981). Saturation regions in catchments and their relations to soil and topographic properties. Journal of Hydrology, 53, 229-246.
O’loughlin, E. M. (1986). Prediction of surface saturation zones in natural catchments by topographic analysis. Water Resources Research, 22(5), 794-804.
Onda, Y., Tsujimura, M., Tabuchi, H. (2004) The role of subsurface water flow paths on hillslope hydrological processes, landslides and landform development in steep mountains of Japan. Hydrological Processes, 18, 637-650.
Pack, R. T., Tarboton, D. G., Goodwin, C. N. (1998). The SINMAP approach to terrain stability mapping. 8th Congress of the International Association of Engineering Geology, Vancouver, British Columbia.
Palamakumbure, D., Flentje, P., Stirling, D. (2015). Consideration of optimal pixel resolution in deriving landslide susceptibility zoning within the Sydney Basin, New South Wales, Australia, Computers & Geosciences, 82(2015), 13-22.
Quinn, P. F., Beven, K. J., Chevallier, P., Planchon, O. (1991). The prediction of hillslope flow paths for distributed hydrological using digital terrain models. Hydrological Process, 5, 59-79.
Santacana, N., Baeza, B., Corominas, J. (2003). A GIS-Based Multivariate Statistical Analysis for Shallow Landslide Susceptibility Mapping in La Pobla de Lillet Area (Eastern Pyrenees, Spain). Natural Hazards, 30, 281-295.
Tarboton, D. G. (1997). A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resource Research, 33, 309-319.
United States Geological Survey (2014). Landslide Types and Process. https://pubs.usgs.gov/fs/2004/3072/fs-2004-3072.html
Van Westen, C. J., Rengers, N., Soeters, R. (2003). Use of geomorphological information in indirect landslide susceptibility assessment. Nat. Hazards, 30, 399-419.
Varnes, D. J. (1978). Slope movement types and processes: In Landslides, Analysis and Control. Nat. Acad. Sci. Spec. Rep., 176, 11-35.
Vieira, B.C., Fernandes, N.F., Augusto Filho, O., Montgomery, D. R. (2018). Assessing shallow landslide hazards using the TRIGRS and SHALSTAB models, Serra do Mar, Brazil. Environmental Earth Sciences, 77(6), 1-15.
Wilson, C. J., Dietrich, W. E. (1987). The contribution of bedrock groundwater flow to storm runoff and high pore pressure development in hollows. IAHS-AISH publ., 165, 49-59.
Wolock, D. M., McCabe Jr., G. J. (1995). Comparison of single and multiple flow direction algorithms for computing topographic parameters in TOPMODEL, Water Resources Research, 31 (5), 1315-1324. |