參考文獻 |
1. Adianto, H., Riawan, A.I., Susanto, E., 2018. Determination of liquid product distribution route using clark and wright saving and tabu seacrh algorithm for a milk industry in indonesia. Int. J. Eng. Technol. 7, 102–105. https://doi.org/10.14419/ijet.v7i2.29.13138
2. Afzalirad, M., Rezaeian, J., 2016. Resource-constrained unrelated parallel machine scheduling problem with sequence dependent setup times, precedence constraints and machine eligibility restrictions. Comput. Ind. Eng. 98, 40–52. https://doi.org/10.1016/j.cie.2016.05.020
3. Almeder, C., Mönch, L., 2011. Metaheuristics for scheduling jobs with incompatible families on parallel batching machines. J. Oper. Res. Soc. 62, 2083–2096. https://doi.org/10.1057/jors.2010.186
4. Arroyo, J.E.C., Leung, J.Y.T., 2017a. An effective iterated greedy algorithm for scheduling unrelated parallel batch machines with non-identical capacities and unequal ready times. Comput. Ind. Eng. 105, 84–100. https://doi.org/10.1016/j.cie.2016.12.038
5. Arroyo, J.E.C., Leung, J.Y.T., 2017b. Scheduling unrelated parallel batch processing machines with non-identical job sizes and unequal ready times. Comput. Oper. Res. 78, 117–128. https://doi.org/10.1016/j.cor.2016.08.015
6. Arroyo, J.E.C., Leung, J.Y.T., Tavares, R.G., 2019. An iterated greedy algorithm for total flow time minimization in unrelated parallel batch machines with unequal job release times. Eng. Appl. Artif. Intell. 77, 239–254. https://doi.org/10.1016/j.engappai.2018.10.012
7. Aytug, H., Khouja, M., Vergara, F.E., 2003. Use of genetic algorithms to solve production and operations management problems: A review. Int. J. Prod. Res. 41, 3955–4009. https://doi.org/10.1080/00207540310001626319
8. Balasubramanian, H., Mönch, L., Fowler, J., Pfund, M., 2004. Genetic algorithm based scheduling of parallel batch machines with incompatible job families to minimize total weighted tardiness. Int. J. Prod. Res. 42, 1621–1638. https://doi.org/10.1080/00207540310001636994
9. Bard, J.F., Rojanasoonthon, S., 2006. A branch-and-price algorithm for parallel machine scheduling with time windows and job priorities. Nav. Res. Logist. 53, 24–44. https://doi.org/10.1002/nav.20118
10. Bean, J.C., 1994. Genetic Algorithms and Random Keys for Sequencing and Optimization. ORSA J. Comput. 6, 154–160. https://doi.org/10.1287/ijoc.6.2.154
11. Bektur, G., Saraç, T., 2019. A mathematical model and heuristic algorithms for an unrelated parallel machine scheduling problem with sequence-dependent setup times, machine eligibility restrictions and a common server. Comput. Oper. Res. 103, 46–63. https://doi.org/10.1016/j.cor.2018.10.010
12. Bilyk, A., Mönch, L., Almeder, C., 2014. Scheduling jobs with ready times and precedence constraints on parallel batch machines using metaheuristics. Comput. Ind. Eng. 78, 175–185. https://doi.org/10.1016/j.cie.2014.10.008
13. Brucker, P., Gladky, A., Hoogeveen, H., Kovalyov, M.Y., Potts, C.N., Tautenhahn, T., Van De Velde, S.L., 1998. Scheduling a batching machine. J. Sched. 1, 31–54. https://doi.org/10.1002/(SICI)1099-1425(199806)1:1<31::AID-JOS4>3.0.CO;2-R
14. Brucker, P., Kravchenko, S.A., 2008. Scheduling jobs with equal processing times and time windows on identical parallel machines. J. Sched. 11, 229–237. https://doi.org/10.1007/s10951-008-0063-y
15. Çatay, B., 2010. A new saving-based ant algorithm for the Vehicle Routing Problem with simultaneous Pickup and Delivery. Expert Syst. Appl. 37, 6809–6817. https://doi.org/10.1016/j.eswa.2010.03.045
16. Centeno, G., Armacost, R.L., 2004. Minimizing makespan on parallel machines with release time and machine eligibility restrictions. Int. J. Prod. Res. 42, 1243–1256. https://doi.org/10.1080/00207540310001631584
17. Centeno, G., Armacost, R.L., 1997. Parallel machine scheduling with release time and machine eligibility restrictions. Comput. Ind. Eng. 33, 273–276. https://doi.org/10.1016/s0360-8352(97)00091-0
18. Chan, F.T.S., Wong, T.C., Chan, L.Y., 2006. Flexible job-shop scheduling problem under resource constraints. Int. J. Prod. Res. 44, 2071–2089. https://doi.org/10.1080/00207540500386012
19. Chang, P.Y., Damodaran, P., Melouk, S., 2004. Minimizing makespan on parallel batch processing machines. Int. J. Prod. Res. 42, 4211–4220. https://doi.org/10.1080/00207540410001711863
20. Chen, H., Du, B., Huang, G.Q., 2011. Scheduling a batch processing machine with non-identical job sizes: A clustering perspective. Int. J. Prod. Res. 49, 5755–5778. https://doi.org/10.1080/00207543.2010.512620
21. Chen, H., Zhou, S., Li, X., Xu, R., 2014. A hybrid differential evolution algorithm for a two-stage flow shop on batch processing machines with arbitrary release times and blocking. Int. J. Prod. Res. 52, 5714–5734. https://doi.org/10.1080/00207543.2014.910625
22. Cheng, B., Yang, S., Hu, X., Chen, B., 2012. Minimizing makespan and total completion time for parallel batch processing machines with non-identical job sizes. Appl. Math. Model. 36, 3161–3167. https://doi.org/10.1016/j.apm.2011.09.061
23. Chiang, T.C., Cheng, H.C., Fu, L.C., 2010. A memetic algorithm for minimizing total weighted tardiness on parallel batch machines with incompatible job families and dynamic job arrival. Comput. Oper. Res. 37, 2257–2269. https://doi.org/10.1016/j.cor.2010.03.017
24. Chou, F. Der, 2007. A joint GA+DP approach for single burn-in oven scheduling problems with makespan criterion. Int. J. Adv. Manuf. Technol. 35, 587–595. https://doi.org/10.1007/s00170-006-0738-5
25. Chung, S.H., Tai, Y.T., Pearn, W.L., 2009. Minimising makespan on parallel batch processing machines with non-identical ready time and arbitrary job sizes. Int. J. Prod. Res. 47, 5109–5128. https://doi.org/10.1080/00207540802010807
26. Clarke, G., Wright, J.W., 1964. Scheduling of Vehicles from a Central Depot to a Number of Delivery Points. Oper. Res. 12, 568–581. https://doi.org/10.1287/opre.12.4.568
27. Dai, Z., Gao, K., Giri, B.C., 2020. A hybrid heuristic algorithm for cyclic inventory-routing problem with perishable products in VMI supply chain. Expert Syst. Appl. 153, 113322. https://doi.org/10.1016/j.eswa.2020.113322
28. Damodaran, P., Chang, P.Y., 2008. Heuristics to minimize makespan of parallel batch processing machines. Int. J. Adv. Manuf. Technol. 37, 1005–1013. https://doi.org/10.1007/s00170-007-1042-8
29. Damodaran, P., Kumar Manjeshwar, P., Srihari, K., 2006. Minimizing makespan on a batch-processing machine with non-identical job sizes using genetic algorithms. Int. J. Prod. Econ. 103, 882–891. https://doi.org/10.1016/j.ijpe.2006.02.010
30. Damodaran, P., Vélez-Gallego, M.C., 2012. A simulated annealing algorithm to minimize makespan of parallel batch processing machines with unequal job ready times. Expert Syst. Appl. 39, 1451–1458. https://doi.org/10.1016/j.eswa.2011.08.029
31. Damodaran, P., Vélez-Gallego, M.C., Maya, J., 2011. A GRASP approach for makespan minimization on parallel batch processing machines. J. Intell. Manuf. 22, 767–777. https://doi.org/10.1007/s10845-009-0272-z
32. Gabrel, V., 1995. Scheduling jobs within time windows on identical parallel machines: New model and algorithms. Eur. J. Oper. Res. 83, 320–329. https://doi.org/10.1016/0377-2217(95)00010-N
33. Garcia, J.M., Lozano, S., 2005. Production and delivery scheduling problem with time windows. Comput. Ind. Eng. 48, 733–742. https://doi.org/10.1016/j.cie.2004.12.004
34. Gokhale, R., Mathirajan, M., 2012. Scheduling identical parallel machines with machine eligibility restrictions to minimize total weighted flowtime in automobile gear manufacturing. Int. J. Adv. Manuf. Technol. 60, 1099–1110. https://doi.org/10.1007/s00170-011-3653-3
35. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R., 1979. Optimization and approximation in deterministic sequencing and scheduling: A survey. Ann. Discret. Math. https://doi.org/10.1016/S0167-5060(08)70356-X
36. Holland., J.H., 1975. Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor.
37. Huang, R.H., Yang, C.L., Huang, H.T., 2010. Parallel machine scheduling with common due windows. J. Oper. Res. Soc. 61, 640–646. https://doi.org/10.1057/jors.2008.184
38. Hungerländer, P., Truden, C., 2018. Efficient and Easy-to-Implement Mixed-Integer Linear Programs for the Traveling Salesperson Problem with Time Windows. Transp. Res. Procedia 30, 157–166. https://doi.org/10.1016/j.trpro.2018.09.018
39. Hwang, H.C., Chang, S.Y., Lee, K., 2004. Parallel machine scheduling under a grade of service provision. Comput. Oper. Res. 31, 2055–2061. https://doi.org/10.1016/S0305-0548(03)00164-3
40. Ikura, Y., Gimple, M., 1986. Efficient scheduling algorithms for a single batch processing machine. Oper. Res. Lett. 5, 61–65. https://doi.org/10.1016/0167-6377(86)90104-5
41. Jabbarizadeh, F., Zandieh, M., Talebi, D., 2009. Hybrid flexible flowshops with sequence-dependent setup times and machine availability constraints. Comput. Ind. Eng. 57, 949–957. https://doi.org/10.1016/j.cie.2009.03.012
42. Jeřábek, K., Majercak, P., Kliestik, T., Valaskova, K., 2016. Clark Wright algoritam modela uštede koji se koristi kod rješavanja problema usmjeravanja u logistici opskrbe. Nase More 63, 115–119. https://doi.org/10.17818/NM/2016/SI7
43. Ji, P., Sze, M.T., Lee, W.B., 2001. Genetic algorithm of determining cycle time for printed circuit board assembly lines. Eur. J. Oper. Res. 128, 175–184. https://doi.org/10.1016/S0377-2217(99)00348-3
44. Jia, Z.H., Leung, J.Y.T., 2014. An improved meta-heuristic for makespan minimization of a single batch machine with non-identical job sizes. Comput. Oper. Res. 46, 49–58. https://doi.org/10.1016/j.cor.2014.01.001
45. Jia, Z.H., Li, K., Leung, J.Y.T., 2015. Effective heuristic for makespan minimization in parallel batch machines with non-identical capacities. Int. J. Prod. Econ. 169, 1–10. https://doi.org/10.1016/j.ijpe.2015.07.021
46. Jia, Z.H., Wang, C., Leung, J.Y.T., 2016. An ACO algorithm for makespan minimization in parallel batch machines with non-identical job sizes and incompatible job families. Appl. Soft Comput. J. 38, 395–404. https://doi.org/10.1016/j.asoc.2015.09.056
47. Kashan, A.H., Karimi, B., Jenabi, M., 2008. A hybrid genetic heuristic for scheduling parallel batch processing machines with arbitrary job sizes. Comput. Oper. Res. 35, 1084–1098. https://doi.org/10.1016/j.cor.2006.07.005
48. Khouja, M., Michalewicz, Z., Satoskar, S.S., 2000. A comparison between genetic algorithms and the rand method for solving the joint replenishment problem. Prod. Plan. Control 11, 556–564. https://doi.org/10.1080/095372800414115
49. Kimms, A., 1999. A genetic algorithm for multi-level, multi-machine lot sizing and scheduling. Comput. Oper. Res. 26, 829–848. https://doi.org/10.1016/S0305-0548(98)00089-6
50. Klemmt, A., Weigert, G., Almeder, C., Mönch, L., 2009. A comparison of MIP-based decomposition techniques and VNS approaches for batch scheduling problems. Proc. - Winter Simul. Conf. 1686–1694. https://doi.org/10.1109/WSC.2009.5429173
51. Koh, S.G., Koo, P.H., Ha, J.W., Lee, W.S., 2004. Scheduling parallel batch processing machines with arbitrary job sizes and incompatible job families. Int. J. Prod. Res. 42, 4091–4107. https://doi.org/10.1080/00207540410001704041
52. Lee, H., Maravelias, C.T., 2017. Discrete-time mixed-integer programming models for short-term scheduling in multipurpose environments. Comput. Chem. Eng. 107, 171–183. https://doi.org/10.1016/j.compchemeng.2017.06.013
53. Li, Y., Chen, J., Cai, X., 2007. Heuristic genetic algorithm for capacitated production planning problems with batch processing and remanufacturing. Int. J. Prod. Econ. 105, 301–317. https://doi.org/10.1016/j.ijpe.2004.11.017
54. Li, Y., Lim, A., Rodrigues, B., 2004. Crossdocking - JIT scheduling with time windows. J. Oper. Res. Soc. 55, 1342–1351. https://doi.org/10.1057/palgrave.jors.2601812
55. Li, Z., Chen, H., Xu, R., Li, X., 2015. Earliness-tardiness minimization on scheduling a batch processing machine with non-identical job sizes. Comput. Ind. Eng. 87, 590–599. https://doi.org/10.1016/j.cie.2015.06.008
56. Liao, L.W., Sheen, G.J., 2008. Parallel machine scheduling with machine availability and eligibility constraints. Eur. J. Oper. Res. 184, 458–467. https://doi.org/10.1007/s00170-006-0810-1
57. Lin, Y., Li, W., 2004. Parallel machine scheduling of machine-dependent jobs with unit-length. Eur. J. Oper. Res. 156, 261–266. https://doi.org/10.1016/S0377-2217(02)00914-1
58. Malve, S., Uzsoy, R., 2007. A genetic algorithm for minimizing maximum lateness on parallel identical batch processing machines with dynamic job arrivals and incompatible job families. Comput. Oper. Res. 34, 3016–3028. https://doi.org/10.1016/j.cor.2005.11.011
59. Mathirajan, M., Sivakumar, A.I., 2006. A literature review, classification and simple meta-analysis on scheduling of batch processors in semiconductor. Int. J. Adv. Manuf. Technol. 29, 990–1001. https://doi.org/10.1007/s00170-005-2585-1
60. Mehta, S. V., Uzsoy, R., 1998. Minimizing total tardiness on a batch processing machine with incompatible job families. IIE Trans. (Institute Ind. Eng. 30, 165–178. https://doi.org/10.1080/07408179808966448
61. Mönch, L., Balasubramanian, H., Fowler, J.W., Pfund, M.E., 2005. Heuristic scheduling of jobs on parallel batch machines with incompatible job families and unequal ready times. Comput. Oper. Res. 32, 2731–2750. https://doi.org/10.1016/j.cor.2004.04.001
62. Mönch, L., Fowler, J.W., Mason, S.J., 2012. Production planning and control for semiconductor wafer fabrication facilities: modeling, analysis, and systems. Springer Science & Business Media.
63. Montero, A., Méndez-Díaz, I., Miranda-Bront, J.J., 2017. An integer programming approach for the time-dependent traveling salesman problem with time windows. Comput. Oper. Res. 88, 280–289. https://doi.org/10.1016/j.cor.2017.06.026
64. Norman, B.A., Bean, J.C., 1999. A Genetic Algorithm Methodology for Complex Scheduling Problems. Nav. Res. Logist. 46, 199–211. https://doi.org/10.1002/(SICI)1520-6750(199903)46:2<199::AID-NAV5>3.0.CO;2-L
65. Örnek, A., Özpeynirci, S., Öztürk, C., 2010. A note on “A mixed integer programming model for advanced planning and scheduling (APS).” Eur. J. Oper. Res. 203, 784–785. https://doi.org/10.1016/j.ejor.2009.09.025
66. Ozturk, O., Begen, M.A., Zaric, G.S., 2014. A branch and bound based heuristic for makespan minimization of washing operations in hospital sterilization services. Eur. J. Oper. Res. 239, 214–226. https://doi.org/10.1016/j.ejor.2014.05.014
67. Pamosoaji, A.K., Dewa, P.K., Krisnanta, J.V., 2019. Proposed Modified Clarke-Wright Saving Algorithm for Capacitated Vehicle Routing Problem. Int. J. Ind. Eng. Eng. Manag. 1, 9. https://doi.org/10.24002/ijieem.v1i1.2292
68. Pan, Q.K., Tasgetiren, M.F., Liang, Y.C., 2007. A discrete differential evolution algorithm for the permutation flowshop scheduling problem. Proc. GECCO 2007 Genet. Evol. Comput. Conf. 126–133. https://doi.org/10.1145/1276958.1276976
69. Pearn, W.L., Hong, J.S., Tai, Y.T., 2013. The burn-in test scheduling problem with batch dependent processing time and sequence dependent setup time. Int. J. Prod. Res. 51, 1694–1706. https://doi.org/10.1080/00207543.2012.694488
70. Perez-Gonzalez, P., Fernandez-Viagas, V., Zamora García, M., Framinan, J.M., 2019. Constructive heuristics for the unrelated parallel machines scheduling problem with machine eligibility and setup times. Comput. Ind. Eng. 131, 131–145. https://doi.org/10.1016/j.cie.2019.03.034
71. Pinedo, M., Hadavi, K., 1992. Scheduling: Theory, Algorithms and Systems Development. Oper. Res. Proc. 1991 35–42. https://doi.org/10.1007/978-3-642-46773-8_5
72. Pinedo, M.L., 1995. Scheduling: Theory, algorithms, and systems, Scheduling: Theory, Algorithms, and Systems. https://doi.org/10.1007/978-0-387-78935-4
73. Potts, C.N., Kovalyov, M.Y., 2000. Scheduling with batching: a review. Eur. J. Oper. Res. 120, 228–249. https://doi.org/10.1016/S0377-2217(99)00153-8
74. Reichelt, D., Mönch, L., 2006. Multiobjective scheduling of jobs with incompatible families on parallel batch machines. Eur. Conf. Evol. Comput. Comb. Optim. 209–221. https://doi.org/10.1007/11730095_18
75. Segerstedt, A., 2014. A simple heuristic for vehicle routing-A variant of Clarke and Wright’s saving method. Int. J. Prod. Econ. 157, 74–79. https://doi.org/10.1016/j.ijpe.2013.09.017
76. Sheen, G.J., Liao, L.W., 2007. A branch and bound algorithm for the one-machine scheduling problem with minimum and maximum time lags. Eur. J. Oper. Res. 181, 102–116. https://doi.org/10.1016/j.ejor.2006.06.003
77. Sheremetov, L., Martínez-Muñoz, J., Chi-Chim, M., 2018. Two-stage genetic algorithm for parallel machines scheduling problem: Cyclic steam stimulation of high viscosity oil reservoirs. Appl. Soft Comput. J. 64, 317–330. https://doi.org/10.1016/j.asoc.2017.12.021
78. Shirvani, N., Ruiz, R., Shadrokh, S., 2014. Cyclic scheduling of perishable products in parallel machine with release dates, due dates and deadlines. Int. J. Prod. Econ. 156, 1–12. https://doi.org/10.1016/j.ijpe.2014.04.013
79. Shubin, X., Bean, J.C., 2007. A genetic algorithm for scheduling parallel non-identical batch processing machines. Proc. 2007 IEEE Symp. Comput. Intell. Sched. CI-Sched 2007 143–150. https://doi.org/10.1109/SCIS.2007.367682
80. Snyder, L. V., Daskin, M.S., 2006. A random-key genetic algorithm for the generalized traveling salesman problem. Eur. J. Oper. Res. 174, 38–53. https://doi.org/10.1016/j.ejor.2004.09.057
81. Tarhini, A., Danach, K., Harfouche, A., 2020. Swarm intelligence-based hyper-heuristic for the vehicle routing problem with prioritized customers. Ann. Oper. Res. 1–22. https://doi.org/10.1007/s10479-020-03625-5
82. Uzsoy, R., 1995. Scheduling batch processing machines with incompatible job families. Int. J. Prod. Res. 33, 2685–2708. https://doi.org/10.1080/00207549508904839
83. Uzsoy, R., 1994. Scheduling a single batch processing machine with non-identical job sizes. Int. J. Prod. Res. 32, 1615–1635. https://doi.org/10.1080/00207549408957026
84. Vallada, E., Ruiz, R., 2011. A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times. Eur. J. Oper. Res. 211, 612–622. https://doi.org/10.1016/j.ejor.2011.01.011
85. Wang, I.L., Wang, Y.C., Chen, C.W., 2013. Scheduling unrelated parallel machines in semiconductor manufacturing by problem reduction and local search heuristics. Flex. Serv. Manuf. J. 25, 343–366. https://doi.org/10.1007/s10696-012-9150-7
86. Wang, S.Y., Sheen, G.J., Yeh, Y., 2015. Pricing and shelf space decisions with non-symmetric market demand. Int. J. Prod. Econ. 169, 233–239. https://doi.org/10.1016/j.ijpe.2015.08.012
87. Yu, C., Semeraro, Q., Matta, A., 2018. A genetic algorithm for the hybrid flow shop scheduling with unrelated machines and machine eligibility. Comput. Oper. Res. 100, 211–229. https://doi.org/10.1016/j.cor.2018.07.025
88. Zhang, G., Hu, Y., Sun, J., Zhang, W., 2020. An improved genetic algorithm for the flexible job shop scheduling problem with multiple time constraints. Swarm Evol. Comput. 54, 100664. https://doi.org/10.1016/j.swevo.2020.100664
89. Zhou, S., Chen, H., Xu, R., Li, X., 2014. Minimising makespan on a single batch processing machine with dynamic job arrivals and non-identical job sizes. Int. J. Prod. Res. 52, 2258–2274. https://doi.org/10.1080/00207543.2013.854937
90. Zhou, S., Liu, M., Chen, H., Li, X., 2016. An effective discrete differential evolution algorithm for scheduling uniform parallel batch processing machines with non-identical capacities and arbitrary job sizes. Int. J. Prod. Econ. 179, 1–11. https://doi.org/10.1016/j.ijpe.2016.05.014
91. Zhou, S., Xie, J., Du, N., Pang, Y., 2018. A random-keys genetic algorithm for scheduling unrelated parallel batch processing machines with different capacities and arbitrary job sizes. Appl. Math. Comput. 334, 254–268. https://doi.org/10.1016/j.amc.2018.04.024
92. Zhou, Z., Che, A., Yan, P., 2012. A mixed integer programming approach for multi-cyclic robotic flowshop scheduling with time window constraints. Appl. Math. Model. 36, 3621–3629. https://doi.org/10.1016/j.apm.2011.10.032 |