博碩士論文 107623601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:126 、訪客IP:3.143.241.253
姓名 高凱爾(Glenn Franco B. Gacal)  查詢紙本館藏   畢業系所 太空科學與工程研究所
論文名稱 縮裝型小衛星氧原子酬載:實作、功能與環境驗證
(Compact Atomic Oxygen Payload for Small Satellites: Implementation, Functional and Environmental Verification)
相關論文
★ 電離層赤道異常區之電子濃度季節性震盪及日變化★ Development and Validation of an Airglow Photometer for Upper Atmospheric Chemistry
★ Tidal Variability Due to the Quasi-Biennial Oscillation and Ionospheric Responses★ 自地面觀測氣輝反演氧原子離子光化學模型
★ 福衛三號S4閃爍指數時空變化與潮汐分析★ 飛鼠號立方衛星電力次系統設計
★ 支援飛鼠號立方衛星之S頻段地面站評估及整測★ 福衛五號軌道推算軟體敏感度及飛行資料分析
★ 適用於小型衛星二階段展開太陽能板的鎖定鉸鏈的結構設計,分析以及測試★ 中央大學地面系統設計、整測與驗證
★ 太空飛行器電力次系統硬體迴路測試平台之建立★ 應用先進電離層探測儀與類神經網路以建立初步電漿泡預測模型
★ 飛鼠號立方衛星之飛行軟體及韌體設計★ IDEASSat任務的經驗教訓:大學立方衛星 的設計、測試、在軌運行和異常分析
★ 以立方衛星與微衛星進行GNSS-R/RO觀測的可行性研究★ Deep Space Radiation Probe 結構與熱控的設計模擬與測試驗證
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著廉價低軌道人造衛星開始大量使用,人類對於熱氣層高層大氣科學的需求也隨之增加。這因此也產生了機會讓大學機構建造一系列提供電離層及熱氣層參數原地測量的小型衛星觀測網。氧原子在高層大氣扮演極重要的角色。氧原子的含量會影響高層大氣對低軌衛星所產生的軌道擾動及限制衛星壽命空氣阻力,尤其是在太陽極大期的狀況下。在高層大氣的數值模擬中,氧原子會透過大氣標高及O/N2濃度比例影響電離層及熱氣層的變化。前者會影響高層大氣的厚度,後者會因為原子離子的壽命比分子離子長而影響電離層電漿濃度。氧元子另外也是非常有效率的氧化劑,因而會對低軌衛星的表面產生腐蝕作用。低地球軌道的氧元子分佈因此對高層大氣科學及衛星的飛行環境都很重要。本研究的目的為設計並實現、驗證一個適合由小型衛星攜帶的氧元子感測器酬載。
光量計(actinometer)是一種操作簡單,可以用來量化氧元子通量及累積通量的儀器。本研究以銀製的薄膜電阻加上二線電阻量測電路來實現一個氧元子感測劑原型。本酬載的耗電量只有 0.16 W,佔的空間只有 0.1U,外加擺在衛星外部曝曬在氧原子環境下的感測計。地面上用氚燈進行的功能測試已驗證溫度變化對反演出來的氧原子通量所產生的影響。在薄膜電阻的電阻值不變的狀況下,隨著時間增加(減少)的溫度會導致反演出的通量產生正(負)的變化。氚燈測試因為溫度變化的影響遠大於薄膜電阻被氧原子腐蝕的影響,因而無法用來驗證薄膜電阻腐蝕的運作機制。反之,我們使用硫來啟發薄膜電阻的腐蝕作用,驗證後端電路能夠透過電阻值的變化偵測到環境對薄膜電阻的腐蝕作用。總之,我們實現並驗證了一個適合小型衛星使用的氧原子感測器酬載原型。本酬載使用的1.1 μm厚度的銀薄膜電阻能夠以 1 Hz 的採樣頻率偵測太陽極大及極小期的氧原子通量。本酬載將於中大未來的 IDEASSat Lite 衛星任務上進行實飛測試,也可成為未來其他小型衛星及探空火箭任務的輕量型酬載。
摘要(英) The gradual emergence of economical low Earth orbit microsatellites has fueled the interest of atmospheric and ionospheric science in the thermosphere. This paves the possibility to create a network of in situ ionospheric and thermospheric data collection that is definitively supported and utilized at a university level. Specific to this region of the atmosphere, Atomic Oxygen has been playing a prominent role in numerous mechanisms and processes in the ionosphere. It has been shown that Atomic Oxygen has a strong contribution to disrupting satellite trajectories/lifetime due to its effects on neutral atmospheric thickness and satellite drag especially during solar maximum years. In physics-based and numerical models, the impact of Atomic Oxygen is represented by utilizing the scale height parameter and the O/N2 density ratio parameter. The former affects the thickness of the upper atmosphere, while the latter can affect the lifetime of ionospheric plasma prior to recombination, due to the longer lifetime of atomic versus molecular ions. While conducting in situ observation further advances the scientific understanding of such ionospheric processes, Atomic Oxygen is also corrosive to most current spacecraft materials, thereby presenting unwanted risk in fulfilling space mission objectives. Therefore, not only is characterizing the atomic oxygen environment advantageous in the scientific understanding of the Earth’s upper atmosphere, but it will also shed light on how spacecraft in Low Earth Orbit (LEO) behave and can survive in such an environment. The aim of the study is to create an Atomic Oxygen payload that is well-suited to the mission requirements and design constraints present in a micro- or nanosatellite setting.
A simple yet proven method of quantifying Atomic Oxygen parameters (i.e. flux and fluence) is by use of an actinometer. The chosen actinometer design for the study is a silver-based film sensor in a two-wire configuration for Atomic Oxygen flux and fluence determination. The payload suite only consumes 0.16W of power and only occupies 0.1U space with half of the payload placed outside of the spacecraft for Atomic Oxygen exposure. Ground functional tests with a deuterium lamp setup has provided significant results as to how temperature variation heavily relates with the computed Atomic Oxygen flux. Positive (negative) flux values are garnered with increasing (decreasing) temperature change accompanied with no change in film resistance. However, the deuterium lamp test could not reproduce this silver film erosion due to the parasitic heat by the lamp that overwhelms the film erosion detection. On the other hand, sulfur containing gas experiments has shown that silver corrosion is verifiably detectable by the payload suite. In conclusion, an atomic oxygen payload suitable for small satellites has been developed and is verified on the ground. Using a 1.1 μm thick silver film sensing material at a sampling frequency of 1 Hz, the payload is designed to detect atomic oxygen flux during solar minimum years and solar maximum years. The NCU-made payload is scheduled to exhibit its technology demonstration aboard the IDEASSat Lite project. It is hoped that the payload suite can be utilized amongst numerous CubeSat and sounding rocket missions and improved upon based on technical needs and mission objectives.
關鍵字(中) ★ 有效載荷 關鍵字(英) ★ atomic oxygen
★ payload
★ space engineering
論文目次 Introduction 11
Related Literature 13
Payload Fabrication 17
Working Principle 32
Results 37
Conclusions 56
Future Work 57
參考文獻 Analog Devices. (2017, November). ADN8810 Datasheet.
https://www.analog.com/media/en/technical-documentation/datasheets/
ADN8810.pdf?fbclid=IwAR0bS_qyih_Dfb_Nuv31F4Jlfk4ggmLF2gpFd3wHXWr9Jq
xokq2XFBRJmS4
Texas Instruments. (2015, August). INA226 High-Side or Low-Side Measurement, Bi-Directional
Current and Power Monitor with I2C Compatible Interface.
https://www.ti.com/lit/ds/symlink/ina226.pdf?ts=1643694299775&fbclid=IwAR0oVXDeY
HhKlAVxkqCPh56QyJyhxXMOcNP-sAmU5dQ_DxTAj_ktNUTo4Pk
Texas Instruments. (2016, March). INA3221 Triple-Channel, High-Side Measurement, Shunt and Bus
Voltage Monitor with I2C- and SMBUS-Compatible Interface.
https://www.ti.com/lit/ds/symlink/ina3221.pdf?ts=1599131763936&ref_url=https%253A%2
52F%252Fwww.google.com%252F&fbclid=IwAR2mn_Lp-nZSRz_
u136JtVEOH_Ko83T15xX99cldREEshixX4FjT49d3cM
L. Harris, A. R. Chambers, and G. T. Roberts, “A low cost microsatellite instrument for the in situ
measurement of orbital atomic oxygen effect,” Rev. Sci. Instr, vol. 68, pp. 3200–3228,
1997c.
C B. White, A. R. Chambers, and G. T. Roberts, “Measurement of 5-Ev Atomic Oxygen Using
Carbon Based Films: Preliminary Results,” IEEE Sensors Journal, Vol. 5, No. 6., 2005.
J. J. Osborne, I. L. Harris, G. T. Roberts, and A. R. Chambers, “Satellite and rocket-borne atomic
oxygen sensor techniques,” Rev. Sci. Instrum., vol. 72, no. 11, pp. 4025–4041, 2001.
J. J. Osborne, “A Study of semiconductor-based AO sensors for ground or satellite applications,”
Ph.D. dissertation, School Eng. Sci., Univ. Southampton, Highfield, U.K., 1999a.
J. J. Osborne, G. T. Roberts, and A. R. Chambers, and S. B. Gabriel, “Initial results from groundbased
testing of an atomic oxygen sensor designed for use in earth orbit,” Rev. Sci. Instrum.,
vol. 70, no. 5, pp. 2500-2506, 1999b.
T. R. Gull, H. Herzig, J. F. Osantowski, and A. R. Toft, “Low earth orbit environmental effects of
osmium and related optical thin-film coatings,” Appl. Optics, vol. 24, No. 16, pp. 2660-
2665, 1985.
Muller, D. (Director). (2019, March 13). Why Machines That Bend Are Better [Video file]. Retrieved
from https://www.youtube.com/watch?v=97t7Xj_iBv0. YouTube Channel: Veritasium
EPO-TEK® H20E Technical Datasheet (XVII ed., Datasheet). (2019). Billerica, Massachusetts:
EPOXY TECHNOLOGY.
Bruce A. Banks, S.K. Rutledge, Phillip E. Paulsen and Thomas J. Steuber, “Simulation of the Low
Earth Orbital Atomic Oxygen Interaction With Materials by Means of an Oxygen Ion
Beam,” Presented at the 18th Annual Symposium on Applied Vacuum Science and
Technology, Clearwater Beach, Florida, February 6–8, 1989; NASA TM–101971, 1989.
B.A. Banks, K.K. de Groh, S.K. Rutledge, and F.J. Di Filippo, “Prediction of In-Space Durability of
Protected Polymers Based on Ground Laboratory Thermal Energy Atomic Oxygen,” paper
presented at the Third International Space Conference, Toronto, Canada, April 25–26, 1996.
Miller, G. P., Pettigrew, P. J., Raikar, G. N., & Gregory, J. C. (1997). A simple, inexpensive,
hyperthermal atomic oxygen sensor. Review of Scientific Instruments, 68(9), 3557-3562.
Doi:10.1063/1.1148322
Haenni, W., Boving, H., Perret, A., Van Eesbeek, M., & Matcham, J. (1998). Diamond based atomic
oxygen sensor for space applications. Fourth International High Temperature Electronics
Conference (HITEC). Doi:10.1109/hitec.1998.676794
Steinhart, J. S., & Hart, S. R. (1968). Calibration curves for thermistors. Deep Sea Research and
Oceanographic Abstracts, 15(4), 497-503. Doi:10.1016/0011-7471(68)90057-0
Laing, J. (Director). (2016, May 4). PCB solder paste stencil printer, Neoden PM3040 [Video file].
Retrieved from https://www.youtube.com/watch?v=ud8odsM8eA4
Gacal, G. B. (2021). ATOX: DEUTERIUM LAMP TRADE STUDY (1st ed., Vol. 1, Ser. 1, pp. 1-19,
Rep. No. 002). Taoyuan, Taoyuan: Upper Air Dynamics Laboratory Google Drive. ATOXTRADE-
002.
67
Department of Mechanical Engineering, Brigham Young University. (n.d.). Compliant Mechanisms
Research. Compliant Mechanisms. Retrieved April 2, 2020, from
https://www.compliantmechanisms.byu.edu/
Furling Compliant Mechanism [E-mail to L. Howell Ph.D]. (2020, April 2).
De Groh, K. K., Banks, B. A., McCarthy C. E. , Rucker, R. N., Roberts, L. M., and Berger, L.A.,
“MISSE PEACE Polymers Atomic Oxygen Erosion Results”, NASA TM 2006-214482,
November, 2006.
L.E. Bareiss, R. M. Payton, and H. G. Papazion, NASA CR-3993 (1986) 3.0.
E.M. Sliverman, 1995. Space environmental effects on spacecraft: LEO material selection guide.
NASA CR-4661.
1.T. Visentine and L.J. Leger, (1986), Material Interactions with the Low Earth Orbital Environment:
Accurate Reaction Rate Measurements, JPL Publication 87-14, pp 11-20, November.
J. Gumbel, Ph.D. thesis, Stockholm University, 1997.
A. D. Danilov and V. G. Istomin, Chemistry of the Ionosphere ~Plenum, New York, 1970.
M. C. Kelley, “The Earth’s Ionosphere: Plasma Physics and Electrodynamics,” San Diego, California:
Elsevier Inc., 2009.
S.B. Mende, G.R. Swenson, and K.S. Clifton, Science, Vol. 225:191, 1984.
J. Dever, B. Bank, K. Groh, and S. Miller, “Degradation of Spacecraft Materials,” Handbook of
Environmental Degradation of Materials, Elsevier Inc., pp. 717-770, 2012.
A.C. Bennett, and K. Omidvar, “Alternative method for the thermospheric atomic oxygen density
determination,” Adv. Space Res. 27 (10), 1685–1690, 2001.
R. Yoshimura, N. Iwagami, and K.-I. Oyama, “Rocket measurement of electron density and atomic
oxygen density modulated by atmospheric gravity waves,” Adv. Space Res. 32 (5), 837–842,
2003.
T.C. Kaspar, T.C. Droubay, and S.A. Chambers, “Atomic oxygen flux determined by mixed-phase
Ag/Ag2O deposition,” Thin Solid Films 519, 635–640, 2010.
S. L. Koontz, L. J. Leger, and S. L. Rickman, “Oxygen Interactions with Materials III—Mission and
Induced Environments,” Journ. Spacecr. Rock., vol. 32, 3, 475-482, 1995.
Cheng, Y., Chen, X., & Sheng, T. (2016). In situ measurement of atomic oxygen flux using a
silver film sensor onboard “tiantuo 1” nanosatellite. Advances in Space Research, 57(1),
281-288. Doi:10.1016/j.asr.2015.09.032
Sahu, K., Leidecker, H., & Lakins, D. (2003). EEE-INST-002: Instructions for EEE Parts
Selection, Screening, Qualification, and Derating. Greenbelt, Maryland: National
Aeronautics and Space Administration.
De Rooij, A., The Oxidation of Silver by Atomic Oxygen. ESA Journal, 1989. 13.
R. Chambers, I. L. Harris, and G. T. Roberts, Reactions of spacecraft materials with fast atomic
oxygen. Materials Letters, 1996. 26: p. 121-131.
Moldwin, M. (2008). An introduction to space weather. Cambridge University Press.
Fesen, C. G., Crowley, G., Roble, R. G., Richmond, A. D., and Fejer, B. G. (2000). Simulation of the
prereversal enhancement in the low latitude vertical in drifts. Geophys. Res. Lett. 27(13),
1851.
Glossary: W. (n.d.). Retrieved February 27, 2022, from
https://www.hamamatsu.com/jp/en/support/glossary/w.html
Huo, Y., Fu, SW., Chen, YL. Et al. A reaction study of sulfur vapor with silver and silver–indium
solid solution as a tarnishing test method. J Mater Sci: Mater Electron 27, 10382–10392
(2016). https://doi.org/10.1007/s10854-016-5124-y
Fuller-Rowell, T. J. (1998), The “thermospheric spoon”: A mechanism for the semiannual density
variation, J. Geophys. Res., 103, 3951–3956.
Qian, L., S. C. Solomon, and T. J. Kane (2009), Seasonal variation of thermospheric density and
composition, J. Geophys. Res., 114, A01312, doi:10.1029/2008JA013643.
Kulu, E. (n.d.). Nanosats Database. Retrieved from https://www.nanosats.eu/#info
Chang, L. C., J. Yue, W. Wang, Q. Wu, and R. R. Meier (2014), Quasi two day wave-related
variability in the background dynamics and composition of the mesosphere/ thermosphere,
and the ionosphere, J. Geophys. Res. Space Physics, 119, 4786–4804,
doi:10.1002/2014JA019936.
68
Srivastava, S., Anant Kumar Telikicherla Kandala & Gacal, G. F. (2019). INSPIRESAT-4/ARCADE :
a VLEO mission for atmospheric temperature measurements and ionospheric plasma
characterization. 33rd Annual AIAA/USU Conference on Small Satellites, SSC19-VIII-05—
Chiu, Y.-C., L.C. Chang*, C.-K. Chao, T.-Y. Tai, K.-L. Cheng, H.-T. Liu, R. Tsai-Lin, C.-T. Liao,
W.-H. Luo, G.-P. Chiu, K.-J. Hou, R.-Y. Wang, G.F. Gacal, P.-A. Lin, S. Denduonghatai,
T.-R. Yu, J.-Y. Liu, A. Chandran, K.B.N. Athreyas, Priyadarshan H., J.J. Varghese, M.
Meftah (2022), Lessons Learned from IDEASSat: Design, Testing, On Orbit Operations,
and Anomaly Analysis of a First University CubeSat Intended for Ionospheric Science,
Aerospace, 9, 110. https://doi.org/10.3390/aerospace9020110.
LED4530. (n.d.). Retrieved June, 2019, from
http://en.tensky.com.tw/products/info.php?id=41722&title_id=#page
Chen, A., Fang, H., Tsau, T., Chen, W., Juang, J., & Miau, J. (2019). Miniaturized Solar Extreme
Ultraviolet Probe for CubeSat Missions. Speech presented at Asia Oceania Geosciences
Society in Hawaii, Honolulu.
Vishay Dale. (n.d.). NTHS Series [Datasheet]. Author. Retrieved 2020, from
https://www.mouser.tw/datasheet/2/427/nths-2940500.pdf
Vishay Dale. (n.d.). NTCS0805E3.....T Series [Brochure]. Author. Retrieved 2020, from
https://www.mouser.tw/datasheet/2/427/ntcs0805e3t-2940591.pdf
Vishay Dale. (n.d.). NTCLE300E3...SB Series [Brochure]. Author. Retrieved 2020, from
https://www.mouser.tw/datasheet/2/427/ntclesb-2940609.pdf
Hamamatsu Photonics. (2016a). Deuterium lamp for photoionization: L7293_L13301 [Datasheet].
Iwata: Author. Retrieved April 12, 2021, from
https://www.hamamatsu.com/jp/en/product/light-and-radiation-sources/lamp/deuteriumlamp-
for-photoionization/L7293_L13301.html
Hamamatsu Photonics. (2016b). Deuterium Lamps (D2 Lamps) [Product List]. Iwata: Author.
Retrieved April 12, 2021, from https://www.hamamatsu.com/jp/en/product/light-andradiation-
sources/lamp/deuterium-lamp/L7296.html
Harper, A., Ryschkewitsch, M., Obenschain, A., & Day, R. (2005). General Environmental
Verification Standard (GEVS): For GSFC Flight Programs and Projects (Tech. No. 7000).
Greenbelt, Maryland: NASA Goddard Space Flight Center.
Davis, D., Awwad, N., & Fritzgerald, T. (2014). SMC-S-016 (2014) Test Requirements for Launch,
Upper-Stage and Space Vehicles (Rep.).
National Aeronautics and Space Administration. (n.d.). NASA Preferred Reliability Practices: Random
Vibration Testing [PT-TE-1413]. California: Author.
National Aeronautics and Space Administration. (n.d.). NASA Preferred Reliability Practices: Modal
Testing: Measuring Dynamic Structural Characteristics [PT-TE-1440]. California: Author.
Harry Ku (1966). Notes on the Use of Propagation of Error Formulas, J Research of NATIONAL
Bureau of Standards-C. Engineering and Instrumentation, Vol. 70C, No. 4.
Blue Canyons Technologies. (2019). Attitude Determination Control Systems [Brochure]. Boulder,
Colorado: Author.
Groenewald, C. (n.d.). CubeADCS Interface Control Document (Rep. No. 3.18). Retrieved 2020, from
CubeSpace website: https://www.cubespace.co.za/products/integrated-adcs/3-axis/
Scotch-Weld Epoxy Adhesive: Technical Data (Rep.). (2002, March). Retrieved
https://dragonplate.com/Images/uploaded/Weights%20and%20Specs/Scotch-Weld.pdf
DENG YNG. (2022). DENG YNG® IBXL0003-DOS45-EA [Brochure]. Author. Retrieved May 20,
2022, from https://www.sciket.com/product/group/78585#model
Wilcutt, T. W. (Ed.). (2016). Workmanship Standard for Polymeric Application on Electronic
Assemblies (pp. 27-35, NASA-STD-8739.1B with Change 1). Washington, DC: National
Aeronautics and Space Administration. Retrieved June 04, 2022, from
https://s3vi.ndc.nasa.gov/ssri-kb/static/resources/nasa-std-8739.1b.pdf.
Lin, P. (2022). Implementation of Hardware in-the-loop Test Platform for Spacecraft Electrical Power
Subsystem (Master′s thesis, National Central University, 2022). Taoyuan City: NCU Library.
Retrieved May 07, 2022, from http://140.113.39.130/cgibin/
gs32/ncugsweb.cgi/ccd=OeeolL/login?jstimes=1&loadingjs=1&userid=guest&o=dwebm
ge&cache=1654599083321
69
Tsai-Lin, R. (2020). 飛鼠號立方衛星電力次系統設計 (Master′s thesis, National Central University,
2020). Taoyuan City: NCU Library. Retrieved May 07, 2022, from
http://140.113.39.130/cgi-bin/gs32/ncugsweb.cgi/ccd=OeeolL/record?r1=1&h1=0
National Instruments. (2016). User Guide and Specifications: NI myRIO-1900 [Datasheet]. Author.
Lawrence Berkeley National Laboratory. (2018). Safety Tips for Using UV Lamps [Guideline].
Berkeley, California: Author. Retrieved from
https://www2.lbl.gov/ehs/safety/nir/assets/docs/uv/UV%20lamps%20safety%20tips.pdf
指導教授 張起維(Loren Chang) 審核日期 2022-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明