參考文獻 |
1 George Broughton, I., Janis, J. E. & Attinger, C. E. The basic science of wound healing. Plastic and reconstructive surgery 117, 12S-34S (2006).
2 Barrientos, S., Stojadinovic, O., Golinko, M. S., Brem, H. & Tomic‐Canic, M. Growth factors and cytokines in wound healing. Wound repair and regeneration 16, 585-601 (2008).
3 Ten Dijke, P. & Iwata, K. K. Growth factors for wound healing. Bio/Technology 7, 793-798 (1989).
4 Werner, S. & Grose, R. Regulation of wound healing by growth factors and cytokines. Physiological reviews 83, 835-870 (2003).
5 Xu, X. et al. Transforming growth factor-β in stem cells and tissue homeostasis. Bone research 6, 1-31 (2018).
6 Rahman, M. S., Akhtar, N., Jamil, H. M., Banik, R. S. & Asaduzzaman, S. M. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone research 3, 15005 (2015).
7 De Biase, P. & Capanna, R. Clinical applications of BMPs. Injury 36, S43-S46 (2005).
8 Bostrom, M. P. et al. Immunolocalization and expression of bone morphogenetic proteins 2 and 4 in fracture healing. Journal of orthopaedic research 13, 357-367 (1995).
9 Wang, E. A. et al. Recombinant human bone morphogenetic protein induces bone formation. Proceedings of the National Academy of Sciences 87, 2220-2224 (1990).
10 Reddi, A. H. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nature biotechnology 16, 247-252 (1998).
11 Bessa, P. C., Casal, M. & Reis, R. Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). Journal of tissue engineering and regenerative medicine 2, 81-96 (2008).
12 Ryoo, H.-M., Lee, M.-H. & Kim, Y.-J. Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells. Gene 366, 51-57 (2006).
13 James, A. W. et al. A review of the clinical side effects of bone morphogenetic protein-2. 22, 284-297 (2016).
14 notification, F. FDA Public Health Notification: Lifethreatening Complications Associated with Recombinant Human BoneMorphogenetic Protein in Cervical Spine ; Fusion. 3 (2008).
15 Agrawal, V. & Sinha, M. A review on carrier systems for bone morphogenetic protein‐2. Journal of Biomedical Materials Research Part B: Applied Biomaterials 105, 904-925 (2017).
16 Dickerman, R. D. et al. rh-BMP-2 can be used safely in the cervical spine: dose and containment are the keys! The Spine Journal 7, 508-509 (2007).
17 Roberts, T. T. & Rosenbaum, A. J. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis 8, 114-124 (2012).
18 Nohe, A. et al. The mode of bone morphogenetic protein (BMP) receptor oligomerization determines different BMP-2 signaling pathways. Journal of Biological Chemistry 277, 5330-5338 (2002).
19 Rahman, M. S., Akhtar, N., Jamil, H. M., Banik, R. S. & Asaduzzaman, S. M. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone research 3, 1-20 (2015).
20 Lakhin, A., Tarantul, V. & Gening, L. Aptamers: problems, solutions and prospects. Acta Naturae (англоязычная версия) 5 (2013).
21 Sun, L. Peptide-based drug development. Mod Chem Appl 1, 1-2 (2013).
22 Laurencin, C. T., Ashe, K. M., Henry, N., Kan, H. M. & Lo, K. W.-H. Delivery of small molecules for bone regenerative engineering: preclinical studies and potential clinical applications. Drug discovery today 19, 794-800 (2014).
23 Lakhin, A., Tarantul, V. & Gening, L. Aptamers: problems, solutions and prospects. Acta Naturae 5 (2013).
24 Kessler, H. Conformation and biological activity of cyclic peptides. Angewandte Chemie International Edition in English 21, 512-523 (1982).
25 Goodwin, D., Simerska, P. & Toth, I. Peptides as therapeutics with enhanced bioactivity. Current medicinal chemistry 19, 4451-4461 (2012).
26 Gudivada, V. N., Huang, C.-J., Luo, Y.-H. & Dong, G.-C. A cyclic BMP-2 peptide upregulates BMP-2 protein-induced cell signaling in myogenic cells. Polymers 13, 2549 (2021).
27 Nohe, A., Keating, E., Knaus, P. & Petersen, N. O. Signal transduction of bone morphogenetic protein receptors. Cellular signalling 16, 291-299 (2004).
28 Lowery, J. W. et al. Loss of BMPR2 leads to high bone mass due to increased osteoblast activity. Journal of cell science 128, 1308-1315 (2015).
29 Brunet, L. J., McMahon, J. A., McMahon, A. P. & Harland, R. M. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 280, 1455-1457 (1998).
30 Freire, M. O., You, H.-K., Kook, J.-K., Choi, J.-H. & Zadeh, H. H. Antibody-mediated osseous regeneration: A novel strategy for bioengineering bone by immobilized anti–bone morphogenetic protein-2 antibodies. Tissue Engineering Part A 17, 2911-2918 (2011).
31 Chames, P., Van Regenmortel, M., Weiss, E. & Baty, D. Therapeutic antibodies: successes, limitations and hopes for the future. British journal of pharmacology 157, 220-233 (2009).
32 Wang, M. et al. Novel aptamer-functionalized nanoparticles enhances bone defect repair by improving stem cell recruitment. International journal of nanomedicine 14, 8707 (2019).
33 Hodsman, A. B. et al. Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocrine reviews 26, 688-703 (2005).
34 Suzuki, Y. et al. Alginate hydrogel linked with synthetic oligopeptide derived from BMP‐2 allows ectopic osteoinduction in vivo. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 50, 405-409 (2000).
35 Saito, A., Suzuki, Y., Ogata, S.-i., Ohtsuki, C. & Tanihara, M. Activation of osteo-progenitor cells by a novel synthetic peptide derived from the bone morphogenetic protein-2 knuckle epitope. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1651, 60-67 (2003).
36 Saito, A., Suzuki, Y., Ogata, S. I., Ohtsuki, C. & Tanihara, M. Prolonged ectopic calcification induced by BMP‐2–derived synthetic peptide. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 70, 115-121 (2004).
37 Saito, A., Suzuki, Y., Ogata, S. I., Ohtsuki, C. & Tanihara, M. Accelerated bone repair with the use of a synthetic BMP‐2‐derived peptide and bone‐marrow stromal cells. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 72, 77-82 (2005).
38 Saito, A. et al. Repair of 20‐mm long rabbit radial bone defects using BMP‐derived peptide combined with an α‐tricalcium phosphate scaffold. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 77, 700-706 (2006).
39 Veber, D. F. et al. A potent cyclic hexapeptide analogue of somatostatin. 292, 55 (1981).
40 Jackson, S. et al. Template-constrained cyclic peptides: design of high-affinity ligands for GPIIb/IIIa. 116, 3220-3230 (1994).
41 Hruby, V. J. Designing peptide receptor agonists and antagonists. Nature reviews Drug discovery 1, 847-858 (2002).
42 Gongora-Benitez, M., Tulla-Puche, J. & Albericio, F. Multifaceted roles of disulfide bonds. Peptides as therapeutics. Chemical reviews 114, 901-926 (2014).
43 Wang, M., Wang, Q., Wang, K. & Lu, X. Functionalized TiO2 surfaces facilitate selective receptor-recognition and modulate biological function of bone morphogenetic Protein-2. The Journal of Physical Chemistry C 122, 29319-29329 (2018).
44 Smucker, J. D., Rhee, J. M., Singh, K., Yoon, S. T. & Heller, J. G. Increased swelling complications associated with off-label usage of rhBMP-2 in the anterior cervical spine. Spine 31, 2813-2819 (2006).
45 Lee, J. S., Lee, J. S., Wagoner‐Johnson, A. & Murphy, W. L. Modular peptide growth factors for substrate‐mediated stem cell differentiation. Angewandte Chemie International Edition 48, 6266-6269 (2009).
46 Tong, Z., Guo, J., Glen, R. C., Morrell, N. W. & Li, W. A Bone Morphogenetic Protein (BMP)-derived Peptide Based on the Type I Receptor-binding Site Modifies Cell-type Dependent BMP Signalling. Scientific reports 9, 1-9 (2019).
47 Mace, P. D., Cutfield, J. F. & Cutfield, S. M. High resolution structures of the bone morphogenetic protein type II receptor in two crystal forms: implications for ligand binding. Biochemical and biophysical research communications 351, 831-838 (2006).
48 Chen, Y. & Webster, T. J. Increased osteoblast functions in the presence of BMP‐7 short peptides for nanostructured biomaterial applications. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 91, 296-304 (2009).
49 Kim, H. K. et al. Bone-forming peptide-2 derived from BMP-7 enhances osteoblast differentiation from multipotent bone marrow stromal cells and bone formation. Experimental & molecular medicine 49, e328-e328 (2017).
50 Nanci, A. et al. Chemical modification of titanium surfaces for covalent attachment of biological molecules. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials 40, 324-335 (1998).
51 Madl, C. M., Mehta, M., Duda, G. N., Heilshorn, S. C. & Mooney, D. J. Presentation of BMP-2 mimicking peptides in 3D hydrogels directs cell fate commitment in osteoblasts and mesenchymal stem cells. Biomacromolecules 15, 445-455 (2014).
52 Tan, Z., Parisi, C., Di Silvio, L., Dini, D. & Forte, A. E. Cryogenic 3D printing of super soft hydrogels. Scientific reports 7, 1-11 (2017). |