博碩士論文 109821005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:3.16.69.143
姓名 林毓瑋(Yu-Wei Lin)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 牽牛花果蠅和高山果蠅體型大小與環境因子和體色之間的相關性
(Body size correlating to environmental factors and body color in Drosophila elegans and D. gunungcola)
相關論文
★ Genetic Transformation of The Green Algae Micractinium tetrahymenae by Agrobacterium Mediated transformation★ 跳躍子flea插入let-7 complex基因座可能導致mir-100之低表現量,進而造成果蠅存活率降低和發育遲緩
★ 探討體色與翅班對於牽牛花果蠅性選擇的影響★ 探討mir-100對於果蠅蛹期存活率的影響
★ 果蠅基因與調情—以比較基因體學解碼果蠅翅斑和翅膀展示的共同演化★ 耐旱性對比茶樹品種干旱響應基因的差異表達模式
★ 定位影響果蠅體色的基因—sable★ S-palmitoylation is required for meiotic entry in Schizosaccharomyces pombe
★ Comparative transcriptome analysis reveals key pathways underlying drought stress tolerance and characterizes genetic variations for selective breeding in tea plants, Camellia sinensis
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 動物的體型大小以及不同身體部位的異速生長會受到許多的環境因子所影響而能當成是適應當地環境後的結果,且這些因子也同時去影響其他的性狀,像是身體表皮顏色。在本篇論文以牽牛花果蠅和高山果蠅兩姊妹物種為研究對象,利用翅膀長度、翅膀寬度、前足腿節長度和前足脛節長度等四項測量值作為體型大小指標,探討兩物種自然族群的體型大小之差異、地理分布和遺傳性。兩種物種在不同的族群都有體型大小的區別,在台灣的黑色體色牽牛花果蠅體型比在爪哇與蘇門答臘的棕色牽牛花果蠅大,而大致上分佈於較高緯度、較高海拔地區的族群有較大的體型。此外我們也發現到的翅膀的比例(翅膀長/翅膀寬)的變化程度比前足的比例(腿節/脛節)的變化程度小,可能維持翅膀的形狀對他們來說比較重要。另外我們發現到飼養在實驗室的單雌品系也有體型大小的差異,顯示他們為了適應不同的野外環境而在基因背景上已有所差異。並且我們發現到體型大小和體色有關聯,代表控制這兩個性狀的遺傳因子可能有遺傳連鎖或是基因多效性。
摘要(英) Body size and allometry of body parts in animals are subjected to both environmental perturbation and natural selection for local adaptation, and also interplay with other traits, such as body color. Here, we used Drosophila elegans, which exhibits black or brown color morphs in the north and south of its species range, and Drosophila gunungcola, which exhibits black color morphs, as models to study the relationship between local environment and body size, measured by several body length parameters (wings length, wings width, femur length, and tibia length). Significant variations in body size were found in the natural populations in both species. In D. elegans, black-morphed flies exhibiting from Taiwan are larger than brown-morphed flies from Java and Sumatra. Overall, the body size of populations from higher latitude or higher elevation were found to be larger. Also, we found that the wing ratio (wing length/wing width) is less variable than the foreleg ratio (femur/tibia), suggesting that the maintenance of certain wing shape is more important. In addition, the body size of isofemale lines are significantly variable, indicating that both the genetic and environmental variations contribute to the body size variation found in natural populations. Furthermore, the body color and body size in recombinant inbred lines of D. elegans were found to genetically correlated, suggesting that these two traits may be influenced by closely-linked or pleiotropic genes.
關鍵字(中) ★ 牽牛花果蠅
★ 高山果蠅
★ 體型大小
★ 體色
★ 環境因子
★ 遺傳連鎖
關鍵字(英) ★ Drosophila elegans
★ Drosophila gunungcola
★ body size
★ body color
★ environmental factors
★ genetic linkage
論文目次 中文摘要……………………………...…………………………………..i
英文摘要..…………………………………………………….………….ii
誌謝……………………………………………………………………...iii
目錄…...…………………………………………………………………iv
圖目錄………………………………………………………...…………vi
表目錄……………………………………………………….………….vii
第一章、緒論………………………….………………....…………1
1.1 在自然環境影響體型大小的因素…………….……………..1
1.2 體色和體型大小的相關性…………………………………...2
1.3 牽牛花果蠅Drosophila elegans及高山果蠅Drosophila gunungcola……………………………………………………3
1.4 研究動機和目的……………………………………………...4
第二章、材料與方法…………………………………………...…..6
2.1牽牛花果蠅和高山果蠅的野外採集…………..………..……6
2.2 實驗室品系和培養環境…………..……………………….…6
2.3 建立不同體色的重組自交品系(recombinant inbred line, RIL)………………………………………………………………..7
2.4不同體色的牽牛花果蠅品系雜交…………………...……….7
2.5 果蠅體型大小測量……………………………………...……8
2.6 統計方法……………………………………………………...8
第三章、結果 …………………………………………………….10
3.1 野外族群體型大小變異情況…………………….…………10
3.1.1 牽牛花果蠅……………………………………………..10
3.1.2 高山果蠅………………………………………………..10
3.2野外族群體型大小差異……………………………………..10
3.2.1 牽牛花果蠅野外族群體型大小差異…………………..10
3.2.2 高山果蠅野外族群體型大小差異……………………..13
3.3 單雌品系(isofemale lines)體型大小差異……………..……14
3.4翅膀長寬比與前足脛腿節長度比差異.………………….....14
3.5 體型大小和身體顏色差異的遺傳相關性…………..……...15
3.5.1繼代培養的牽牛花果蠅體型大小差異和野外的不同...15
3.5.2 重組自交品系間體色和體型大小的差異……………..15
3.6 自交品系體型大小變異性較親代品系低….……………....16
第四章、討論……………………………………………………...18
4.1 前足比例的變化程度較大,而翅膀比例變化程度較小.....18
4.2在野外的牽牛花果蠅的體型大小會受到地理環境影響…..19
4.3養在實驗室的單雌品系間仍有體型大小差異……………..19
4.4實驗室的品系體型大小和野外觀察到的相反…………..…19
4.5 重組自交品系的體型大小…………………….…………....20
第五章、結論………………………………………..…………….22
第六章、參考文獻………………………………………………...23
附錄、果蠅採集時間及地點資訊.…………………………….….54
參考文獻 Acquah-Lamptey, D., Brandle, M., Brandl, R., & Pinkert, S. (2020). Temperature-driven color lightness and body size variation scale to local assemblages of European Odonata but are modified by propensity for dispersal. Ecol Evol, 10(16), 8936-8948. doi:10.1002/ece3.6596
Addo‐Bediako, A., Chown, S., & Gaston, K. (2002). Metabolic cold adaptation in insects: a large‐scale perspective. Functional Ecology, 16(3), 332-338.
Atkinson, D. (1996). Ectotherm life-history responses to developmental temperature. In Animals and Temperature (pp. 183-204).
Azevedo, R. B., James, A. C., McCabe, J., & Partridge, L. (1998). Latitudinal variation of wing: thorax size ratio and wing‐aspect ratio in Drosophila melanogaster. Evolution, 52(5), 1353-1362.
Baudron, A. R., Needle, C. L., Rijnsdorp, A. D., & Marshall, C. T. (2014). Warming temperatures and smaller body sizes: synchronous changes in growth of North Sea fishes. Glob Chang Biol, 20(4), 1023-1031. doi:10.1111/gcb.12514
Bergmann, C. (1847). Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Größe. Göttinger Studien, 3, 595-708.
Bidau, C., & Martí, D. (2007). Dichroplus vittatus (Orthoptera: Acrididae) follows the converse to Bergmann′s rule although male morphological variability increases with latitude. Bulletin of entomological research, 97(1), 69-79.
Bidau, C. J., & Martí, D. A. (2008). Geographic and climatic factors related to a body-size cline in Dichroplus pratensis Bruner, 1900 (Acrididae, Melanoplinae)*. Journal of Orthoptera Research, 17(2), 149-156. doi:10.1665/1082-6467-17.2.149
Bock, I. R. (1972). The Drosophila melanogaster species group. University of Texas publication, 7213, 1-102.
Bujan, J., Yanoviak, S. P., & Kaspari, M. (2016). Desiccation resistance in tropical insects: causes and mechanisms underlying variability in a Panama ant community. Ecol Evol, 6(17), 6282-6291. doi:10.1002/ece3.2355
Calder, W. A. (1996). Size, function, and life history: Courier Corporation.
Coyne, J. A., & Beecham, E. (1987). Heritability of two morphological characters within and among natural populations of Drosophila melanogaster. Genetics, 117, 727-737.
David, J. R., & Bocquet, C. (1975). Similarities and differences in latitudinal adaptation of two Drosophila sibling species. Nature, 257(5527), 588-590. doi:10.1038/257588a0
Day, T., & Rowe, L. (2002). Developmental thresholds and the evolution of reaction norms for age and size at life-history transitions. The American Naturalist, 159(4), 338-350.
Dev, K., Chahal, J., Parkash, R., & Kataria, S. (2012). Correlated Changes in Body Melanisation and Mating Traits of Drosophila melanogaster: A Seasonal Analysis. Evolutionary Biology, 40. doi:10.1007/s11692-012-9220-5
Hirai, Y., & Kimura, M. T. (1997). Incipient reproductive isolation between two morphs of Drosophila elegans (Diptera: Drosophilidae). Biological Journal of the Linnean Society, 61(4), 501-513. doi:10.1111/j.1095-8312.1997.tb01804.x %J Biological Journal of the Linnean Society
Hirai, Y., Sasaki, H., & Kimura, M. T. (1999). Copulation duration and its genetic control in Drosophila elegans. Zoological science, 16(2), 211-214.
Hironaka, K. I., Fujimoto, K., & Nishimura, T. (2019). Optimal Scaling of Critical Size for Metamorphosis in the Genus Drosophila. iScience, 20, 348-358. doi:10.1016/j.isci.2019.09.033
Hiyama, A., Nohara, C., Kinjo, S., Taira, W., Gima, S., Tanahara, A., & Otaki, J. M. (2012). The biological impacts of the Fukushima nuclear accident on the pale grass blue butterfly. Sci Rep, 2, 570. doi:10.1038/srep00570
Hoffmann, A. A., & Weeks, A. R. (2007). Climatic selection on genes and traits after a 100 year-old invasion: a critical look at the temperate-tropical clines in Drosophila melanogaster from eastern Australia. Genetica, 129(2), 133-147. doi:10.1007/s10709-006-9010-z
Jagadeeshan, S., Shah, U., Chakrabarti, D., & Singh, R. S. (2015). Female Choice or Male Sex Drive? The Advantages of Male Body Size during Mating in Drosophila Melanogaster. PLoS One, 10(12), e0144672. doi:10.1371/journal.pone.0144672
James, A. C., Azevedo, R. B., & Partridge, L. (1997). Genetic and environmental responses to temperature of Drosophila melanogaster from a latitudinal cline. Genetics, 146(3), 881-890.
James, A. C., & Partridge, L. (1995). Thermal evolution of rate of larval development in Drosophila melanogaster in laboratory and field populations. Journal of Evolutionary Biology, 8(3), 315-330.
Karan, D., Morin, J., Moreteau, B., & David, J. (1998). Body size and developmental temperature in Drosophila melanogaster: analysis of body weight reaction norm. Journal of thermal biology, 23(5), 301-309.
Kelly, C. D. (2008). The interrelationships between resource-holding potential, resource-value and reproductive success in territorial males: How much variation can we explain? Behavioral Ecology and Sociobiology, 62(6), 855-871. doi:10.1007/s00265-007-0518-8
Kennington, W. J., Killeen, J. R., Goldstein, D. B., & Partridge, L. (2003). Rapid laboratory evolution of adult wing area in Drosophila melanogaster in response to humidity. Evolution, 57(4), 932-936.
Kimura, M., & Hirai, Y. (2001). Daily Activity and Territoriality of Drosophila elegans in Sukarami, West Sumatra, Indonesia. Tropics, 10, 489-495. doi:10.3759/tropics.10.489
Kingsolver, J. G., & Huey, R. B. (2008). Size, temperature, and fitness: three rules. Evolutionary Ecology Research, 10(2), 251-268.
Lefranc, A., & Bundgaard, J. (2000). The influence of male and female body size on copulation duration and fecundity in Drosophila melanogaster. Hereditas, 132, 237-247.
Lemeunier F., D. J., Tsacas L., Ashburner M. . (1986). The melanogaster species group. In C. H. Ashburner M, Thompson Jr. JN (Ed.), The Genetics and Biology of Deosophila 3e. (pp. 147-256). London: Academic Press.
Morgan, C., Thomas, R. E., & Cone, R. D. (2004). Melanocortin-5 receptor deficiency promotes defensive behavior in male mice. Hormones and behavior, 45(1), 58-63.
Morgan, C., Thomas, R. E., Ma, W., Novotny, M. V., & Cone, R. D. (2004). Melanocortin-5 receptor deficiency reduces a pheromonal signal for aggression in male mice. Chemical senses, 29(2), 111-115.
Moss-Taylor, L., Upadhyay, A., Pan, X., Kim, M. J., & O′Connor, M. B. (2019). Body Size and Tissue-Scaling Is Regulated by Motoneuron-Derived Activinss in Drosophila melanogaster. Genetics, 213(4), 1447-1464. doi:10.1534/genetics.119.302394
OKADA, T. (1982). Drosophilidae Associated with Flowers in Papua New Guinea: IV. Araceae, Compositae, Convolvulaceae, Rubiaceae, Leguminosae, Malvaceae. 昆蟲, 50(4), 511-526.
Parkash, R., Sharma, V., Chahal, J., Lambhod, C., & Kajla, B. (2011). Impact of body melanization on mating success in Drosophila melanogaster. Entomologia Experimentalis et Applicata, 139(1), 47-59. doi:10.1111/j.1570-7458.2011.01102.x
Partridge, L., & Farquhar, M. (1983). Lifetime mating success of male fruitflies (Drosophila melanogaster) is related to their size. Animal Behaviour, 31(3), 871-877.
Peters, R. H., & Peters, R. H. (1986). The ecological implications of body size (Vol. 2): Cambridge university press.
Pitnick, S., & García–González, F. (2002). Harm to females increases with male body size in Drosophila melanogaster. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269(1502), 1821-1828. doi:doi:10.1098/rspb.2002.2090
Prud′Homme, B., Gompel, N., Rokas, A., Kassner, V. A., Williams, T. M., Yeh, S.-D., . . . Carroll, S. B. (2006). Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene. Nature, 440(7087), 1050-1053.
Przybylska, M. S., Roque, F., & Tidon, R. (2014). Drosophilid Species (Diptera) in the Brazilian Savanna are Larger in the Dry Season. Annals of the Entomological Society of America, 107(5), 994-999. doi:10.1603/an14011
Reeve, Fowler, & Partridge. (2000). Increased body size confers greater fitness at low experimental temperature in male Drosophila melanogaster. Journal of Evolutionary Biology, 13, 836-844. doi:10.1046/j.1420-9101.2000.00216.x
San-Jose, L. M., & Roulin, A. (2018). Toward understanding the repeated occurrence of associations between melanin-based coloration and multiple phenotypes. The American Naturalist, 192(2), 111-130.
Shelomi, M. (2012). Where are we now? Bergmann′s rule sensu lato in insects. Am Nat, 180(4), 511-519. doi:10.1086/667595
Sheridan, J. A., & Bickford, D. (2011). Shrinking body size as an ecological response to climate change. Nature Climate Change, 1(8), 401-406. doi:10.1038/nclimate1259
Singh, S. (2015). Changes in Body Melanisation and Not Body Size Affect Mating Success in Drosophila immigrans. In A. K. Chakravarthy (Ed.), New Horizons in Insect Science: Towards Sustainable Pest Management (pp. 27-38). New Delhi: Springer India.
Stalker, H. D. (1980). Chromosome studies in wild populations of Drosophila melanogaster. II. Relationship of inversion frequencies to latitude, season, wing-loading and flight activity. Genetics, 95(1), 211-223.
Sultana, F., Kimura, M. T., & Toda, M. J. (1999). Anthophilic Drosophila of the elegans species-subgroup from Indonesia, with description of a new species (Diptera: Drosophilidae). Entomological Science, 2, 121-126.
Trullas, S. C., van Wyk, J. H., & Spotila, J. R. (2007). Thermal melanism in ectotherms. Journal of thermal biology, 32(5), 235-245.
Tseng, M., Kaur, K. M., Soleimani Pari, S., Sarai, K., Chan, D., Yao, C. H., . . . Fograscher, K. (2018). Decreases in beetle body size linked to climate change and warming temperatures. Journal of Animal Ecology, 87(3), 647-659.
Zhou, Y., Rodriguez, J., Fisher, N., & Catullo, R. A. (2020). Ecological Drivers and Sex-Based Variation in Body Size and Shape in the Queensland Fruit Fly, Bactrocera tryoni (Diptera: Tephritidae). Insects, 11(6). doi:10.3390/insects11060390
陳期揚 (2020)。探討體色與翅班對於牽牛花果蠅性選擇的影響.。國立中央大學生命科學系碩士論文,桃園市。
指導教授 葉淑丹(Shu-Dan Yeh) 審核日期 2022-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明