參考文獻 |
Acquah-Lamptey, D., Brandle, M., Brandl, R., & Pinkert, S. (2020). Temperature-driven color lightness and body size variation scale to local assemblages of European Odonata but are modified by propensity for dispersal. Ecol Evol, 10(16), 8936-8948. doi:10.1002/ece3.6596
Addo‐Bediako, A., Chown, S., & Gaston, K. (2002). Metabolic cold adaptation in insects: a large‐scale perspective. Functional Ecology, 16(3), 332-338.
Atkinson, D. (1996). Ectotherm life-history responses to developmental temperature. In Animals and Temperature (pp. 183-204).
Azevedo, R. B., James, A. C., McCabe, J., & Partridge, L. (1998). Latitudinal variation of wing: thorax size ratio and wing‐aspect ratio in Drosophila melanogaster. Evolution, 52(5), 1353-1362.
Baudron, A. R., Needle, C. L., Rijnsdorp, A. D., & Marshall, C. T. (2014). Warming temperatures and smaller body sizes: synchronous changes in growth of North Sea fishes. Glob Chang Biol, 20(4), 1023-1031. doi:10.1111/gcb.12514
Bergmann, C. (1847). Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Größe. Göttinger Studien, 3, 595-708.
Bidau, C., & Martí, D. (2007). Dichroplus vittatus (Orthoptera: Acrididae) follows the converse to Bergmann′s rule although male morphological variability increases with latitude. Bulletin of entomological research, 97(1), 69-79.
Bidau, C. J., & Martí, D. A. (2008). Geographic and climatic factors related to a body-size cline in Dichroplus pratensis Bruner, 1900 (Acrididae, Melanoplinae)*. Journal of Orthoptera Research, 17(2), 149-156. doi:10.1665/1082-6467-17.2.149
Bock, I. R. (1972). The Drosophila melanogaster species group. University of Texas publication, 7213, 1-102.
Bujan, J., Yanoviak, S. P., & Kaspari, M. (2016). Desiccation resistance in tropical insects: causes and mechanisms underlying variability in a Panama ant community. Ecol Evol, 6(17), 6282-6291. doi:10.1002/ece3.2355
Calder, W. A. (1996). Size, function, and life history: Courier Corporation.
Coyne, J. A., & Beecham, E. (1987). Heritability of two morphological characters within and among natural populations of Drosophila melanogaster. Genetics, 117, 727-737.
David, J. R., & Bocquet, C. (1975). Similarities and differences in latitudinal adaptation of two Drosophila sibling species. Nature, 257(5527), 588-590. doi:10.1038/257588a0
Day, T., & Rowe, L. (2002). Developmental thresholds and the evolution of reaction norms for age and size at life-history transitions. The American Naturalist, 159(4), 338-350.
Dev, K., Chahal, J., Parkash, R., & Kataria, S. (2012). Correlated Changes in Body Melanisation and Mating Traits of Drosophila melanogaster: A Seasonal Analysis. Evolutionary Biology, 40. doi:10.1007/s11692-012-9220-5
Hirai, Y., & Kimura, M. T. (1997). Incipient reproductive isolation between two morphs of Drosophila elegans (Diptera: Drosophilidae). Biological Journal of the Linnean Society, 61(4), 501-513. doi:10.1111/j.1095-8312.1997.tb01804.x %J Biological Journal of the Linnean Society
Hirai, Y., Sasaki, H., & Kimura, M. T. (1999). Copulation duration and its genetic control in Drosophila elegans. Zoological science, 16(2), 211-214.
Hironaka, K. I., Fujimoto, K., & Nishimura, T. (2019). Optimal Scaling of Critical Size for Metamorphosis in the Genus Drosophila. iScience, 20, 348-358. doi:10.1016/j.isci.2019.09.033
Hiyama, A., Nohara, C., Kinjo, S., Taira, W., Gima, S., Tanahara, A., & Otaki, J. M. (2012). The biological impacts of the Fukushima nuclear accident on the pale grass blue butterfly. Sci Rep, 2, 570. doi:10.1038/srep00570
Hoffmann, A. A., & Weeks, A. R. (2007). Climatic selection on genes and traits after a 100 year-old invasion: a critical look at the temperate-tropical clines in Drosophila melanogaster from eastern Australia. Genetica, 129(2), 133-147. doi:10.1007/s10709-006-9010-z
Jagadeeshan, S., Shah, U., Chakrabarti, D., & Singh, R. S. (2015). Female Choice or Male Sex Drive? The Advantages of Male Body Size during Mating in Drosophila Melanogaster. PLoS One, 10(12), e0144672. doi:10.1371/journal.pone.0144672
James, A. C., Azevedo, R. B., & Partridge, L. (1997). Genetic and environmental responses to temperature of Drosophila melanogaster from a latitudinal cline. Genetics, 146(3), 881-890.
James, A. C., & Partridge, L. (1995). Thermal evolution of rate of larval development in Drosophila melanogaster in laboratory and field populations. Journal of Evolutionary Biology, 8(3), 315-330.
Karan, D., Morin, J., Moreteau, B., & David, J. (1998). Body size and developmental temperature in Drosophila melanogaster: analysis of body weight reaction norm. Journal of thermal biology, 23(5), 301-309.
Kelly, C. D. (2008). The interrelationships between resource-holding potential, resource-value and reproductive success in territorial males: How much variation can we explain? Behavioral Ecology and Sociobiology, 62(6), 855-871. doi:10.1007/s00265-007-0518-8
Kennington, W. J., Killeen, J. R., Goldstein, D. B., & Partridge, L. (2003). Rapid laboratory evolution of adult wing area in Drosophila melanogaster in response to humidity. Evolution, 57(4), 932-936.
Kimura, M., & Hirai, Y. (2001). Daily Activity and Territoriality of Drosophila elegans in Sukarami, West Sumatra, Indonesia. Tropics, 10, 489-495. doi:10.3759/tropics.10.489
Kingsolver, J. G., & Huey, R. B. (2008). Size, temperature, and fitness: three rules. Evolutionary Ecology Research, 10(2), 251-268.
Lefranc, A., & Bundgaard, J. (2000). The influence of male and female body size on copulation duration and fecundity in Drosophila melanogaster. Hereditas, 132, 237-247.
Lemeunier F., D. J., Tsacas L., Ashburner M. . (1986). The melanogaster species group. In C. H. Ashburner M, Thompson Jr. JN (Ed.), The Genetics and Biology of Deosophila 3e. (pp. 147-256). London: Academic Press.
Morgan, C., Thomas, R. E., & Cone, R. D. (2004). Melanocortin-5 receptor deficiency promotes defensive behavior in male mice. Hormones and behavior, 45(1), 58-63.
Morgan, C., Thomas, R. E., Ma, W., Novotny, M. V., & Cone, R. D. (2004). Melanocortin-5 receptor deficiency reduces a pheromonal signal for aggression in male mice. Chemical senses, 29(2), 111-115.
Moss-Taylor, L., Upadhyay, A., Pan, X., Kim, M. J., & O′Connor, M. B. (2019). Body Size and Tissue-Scaling Is Regulated by Motoneuron-Derived Activinss in Drosophila melanogaster. Genetics, 213(4), 1447-1464. doi:10.1534/genetics.119.302394
OKADA, T. (1982). Drosophilidae Associated with Flowers in Papua New Guinea: IV. Araceae, Compositae, Convolvulaceae, Rubiaceae, Leguminosae, Malvaceae. 昆蟲, 50(4), 511-526.
Parkash, R., Sharma, V., Chahal, J., Lambhod, C., & Kajla, B. (2011). Impact of body melanization on mating success in Drosophila melanogaster. Entomologia Experimentalis et Applicata, 139(1), 47-59. doi:10.1111/j.1570-7458.2011.01102.x
Partridge, L., & Farquhar, M. (1983). Lifetime mating success of male fruitflies (Drosophila melanogaster) is related to their size. Animal Behaviour, 31(3), 871-877.
Peters, R. H., & Peters, R. H. (1986). The ecological implications of body size (Vol. 2): Cambridge university press.
Pitnick, S., & García–González, F. (2002). Harm to females increases with male body size in Drosophila melanogaster. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269(1502), 1821-1828. doi:doi:10.1098/rspb.2002.2090
Prud′Homme, B., Gompel, N., Rokas, A., Kassner, V. A., Williams, T. M., Yeh, S.-D., . . . Carroll, S. B. (2006). Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene. Nature, 440(7087), 1050-1053.
Przybylska, M. S., Roque, F., & Tidon, R. (2014). Drosophilid Species (Diptera) in the Brazilian Savanna are Larger in the Dry Season. Annals of the Entomological Society of America, 107(5), 994-999. doi:10.1603/an14011
Reeve, Fowler, & Partridge. (2000). Increased body size confers greater fitness at low experimental temperature in male Drosophila melanogaster. Journal of Evolutionary Biology, 13, 836-844. doi:10.1046/j.1420-9101.2000.00216.x
San-Jose, L. M., & Roulin, A. (2018). Toward understanding the repeated occurrence of associations between melanin-based coloration and multiple phenotypes. The American Naturalist, 192(2), 111-130.
Shelomi, M. (2012). Where are we now? Bergmann′s rule sensu lato in insects. Am Nat, 180(4), 511-519. doi:10.1086/667595
Sheridan, J. A., & Bickford, D. (2011). Shrinking body size as an ecological response to climate change. Nature Climate Change, 1(8), 401-406. doi:10.1038/nclimate1259
Singh, S. (2015). Changes in Body Melanisation and Not Body Size Affect Mating Success in Drosophila immigrans. In A. K. Chakravarthy (Ed.), New Horizons in Insect Science: Towards Sustainable Pest Management (pp. 27-38). New Delhi: Springer India.
Stalker, H. D. (1980). Chromosome studies in wild populations of Drosophila melanogaster. II. Relationship of inversion frequencies to latitude, season, wing-loading and flight activity. Genetics, 95(1), 211-223.
Sultana, F., Kimura, M. T., & Toda, M. J. (1999). Anthophilic Drosophila of the elegans species-subgroup from Indonesia, with description of a new species (Diptera: Drosophilidae). Entomological Science, 2, 121-126.
Trullas, S. C., van Wyk, J. H., & Spotila, J. R. (2007). Thermal melanism in ectotherms. Journal of thermal biology, 32(5), 235-245.
Tseng, M., Kaur, K. M., Soleimani Pari, S., Sarai, K., Chan, D., Yao, C. H., . . . Fograscher, K. (2018). Decreases in beetle body size linked to climate change and warming temperatures. Journal of Animal Ecology, 87(3), 647-659.
Zhou, Y., Rodriguez, J., Fisher, N., & Catullo, R. A. (2020). Ecological Drivers and Sex-Based Variation in Body Size and Shape in the Queensland Fruit Fly, Bactrocera tryoni (Diptera: Tephritidae). Insects, 11(6). doi:10.3390/insects11060390
陳期揚 (2020)。探討體色與翅班對於牽牛花果蠅性選擇的影響.。國立中央大學生命科學系碩士論文,桃園市。 |