博碩士論文 108821019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:143 、訪客IP:3.144.17.45
姓名 梁凱茵(Kai-Yin LIANG)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 水稻熱誘導OsCAF1H去腺苷化酶之功能分析
(Characterization of a heat responsive OsCAF1H deadenylase in rice)
相關論文
★ 水稻CAF1基因之功能分析-水稻CAF1基因的選殖、定性及表現★ 水稻OsDEADl-1基因的功能性探討
★ 利用水稻細胞之懸浮培養建立蛋白質高效率分泌系統★ 水稻CCR4基因之功能分析- 水稻CCR4基因的選殖、定性及表現
★ 阿拉伯芥 AtMYBS 基因功能性探討★ 水稻OsMYBS2基因的功能性分析
★ 水稻CCR4基因的功能分析- 繁衍大量表現和靜默表現的基因轉殖水稻★ 水稻OsVALs基因的功能性分析- 水稻OsVALs基因的選殖、定性及表現
★ 分析水稻T-DNA插入突變株: M0022150, M0023563, M0023580, M0037352及M0032079★ 以水稻懸浮培養細胞蛋白質生產系統生產mGMCSF
★ 建立表現耐熱澱粉普魯南糖酶基因之轉植甘藷★ 阿拉伯芥AtMYBSs基因參與在糖訊息及離層酸訊息傳遞之研究
★ I. II.★ 探討αAmy3、OsCIN1與Os33KD信號肽在水稻懸浮培養細胞中的功能及特性
★ 水稻CAF1基因在水稻懸浮培養細胞之研究★ 探討阿拉伯芥兩個MYB-related轉錄因子在糖訊息傳遞中所扮演的角色
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-8-1以後開放)
摘要(中) 植物由於不能移動,在面對環境逆境時,會藉由快速的基因調控影響後續的蛋白質表現,進而改變生理狀態以達到適應環境逆境的目的。mRNA是基因表現的重要一環,其數量多寡是由轉錄階層與後轉錄階層共同調控。在真核生物中,mRNA deadenylation是大部分mRNA降解的初始步驟,也是速率決定步驟,作用方式為縮短poly(A) tail的長度,降低mRNA的穩定度,使其容易被胞內其他酵素降解或降低轉譯的效率,最終影響了蛋白質含量。CCR4-NOT複合體在mRNA deadenylation中扮演重要角色,它乃利用carbon catabolite repressor 4 (CCR4)和CAF1 (CCR4-associated factor 1)這兩個deadenylase參與在降解mRNA的機制中。水稻含4個CAF1基因,其中OsCAF1H在水稻受高熱時,表現量會大幅度提升,因此本篇論文將進一步探討水稻CAF1H基因在水稻受高熱下的功能。
透過啟動子序列比對分析發現水稻CAF1H包含了非典型的heat shock element (HSE)序列,並在GUS活性分析和組織化學染色法分析實驗中證實,水稻CAF1H基因是一個受熱誘導表現的基因。生理學實驗的部分,相較野生型(WT)、靜默表現(RNA interference) 和先前建立的基因剔除(knock out)轉植株,大量表現(overexpression) 水稻CAF1H基因的轉植株對高熱會有較好的耐受性,表現在水稻種子受熱處理後的發芽率和水稻植株受熱處理後的存活率。根據RNA-seq分析的結果,我們發現Histone 2A基因在野生型水稻受熱後表現量會顯著下降,但在OsCAF1H 基因剔除的轉植株卻沒有明顯的差異,推測Histone 2A可能為OsCAF1H的下游目標基因之一。
摘要(英) Plants cannot move under environmental stress so they use subsequent protein expression through rapid gene regulation, thereby changing their physiological state to achieve the purpose of adapting to environmental stress. mRNA is an important part of gene expression, and its quantity is regulated by the transcriptional and post-transcriptional level. In eukaryotes, mRNA deadenylation is the first step in the degradation of most mRNAs, and it is also a rate-determining step. In this step, deadenylase will short the length of poly(A) tail to make the mRNA unstable and easily to be degraded and then reduce the efficiency of translation, which ultimately affects protein content. The CCR4-NOT complex plays an important role in mRNA deadenylation, which utilizes two deadenylases, carbon catabolite repressor 4 (CCR4) and CAF1 (CCR4-associated factor 1), to participate in the mechanism of mRNA degradation. Rice contains 4 CAF1 genes, among which OsCAF1H will greatly increase the expression when rice is exposed to heat stress. Therefore, this study will further explore the function of rice CAF1H under heat stress in rice.
Through GUS activity analysis and histochemical staining experiments, we knew that the rice CAF1H gene is a heat-inducible gene, and according to the promoter sequence alignment analysis, we found that rice CAF1H contained an atypical heat shock element (HSE) sequence. According to the germination rate test and the survival rate test, the CAF1H overexpression lines show better tolerance to heat stress compare with WT and CAF1H knock out lines. According to the results of RNA-seq analysis, we found that the expression of Histone 2A was significantly decreased in wild-type after heat stress, but there was no significant difference in the OsCAF1H knockout transgenic lines. It is speculated that Histone 2A may be one of the downstream target genes of OsCAF1H.
關鍵字(中) ★ 水稻
★ 熱逆境
★ OsCAF1H
★ 去腺苷化酶
關鍵字(英)
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VI
壹、 序論 1
1. mRNA降解 1
2. Deadenylase 3
3. CCR4-NOT complex 4
4. CAF1 5
5. CRISPR/Cas9 6
6. 熱逆境 8
貳、 材料與方法 10
1. cDNA製備 10
1.1 製備DEPC treated ddH2O (RNase-free solution) 10
1.2 萃取total RNA 10
1.3 去除染色體DNA汙染 10
1.4 合成cDNA 11
2. CRISPR-Cas9 轉植株 11
2.1 設計引子 11
2.2 Spacer序列接合至sgRNA質體中 11
2.3 sgRNA與Cas9質體進行LR 12
3. CRISPR-Cas9 轉植株突變點分析 12
3.1 瓊脂膠體回收DNA 12
4. GUS activity assay 13
4.1 萃取植物總蛋白質 13
4.2 蛋白質含量測定 13
5. GUS assay 14
6. GUS staining assay 14
7. 在逆境下OsCAF1H基因表現分析 15
7.1 水稻植株培養 15
7.2 逆境處理 15
7.3 基因表現分析 15
參、 實驗結果 17
1. OsCAF1H為熱誘導基因 17
2. CRISPR/Cas9 OsCAF1H knockout轉植株建立 18
3. OsCAF1H參與水稻耐熱機制調控 19
4. OsCAF1H下游目標基因分析 21
肆、 討論 23
1. OsCAF1H為熱誘導基因 23
2. CRISPR/Cas9 OsCAF1H knockout轉植株建立 24
3. OsCAF1H參與水稻耐熱機制調控 25
4. OsCAF1H下游目標基因分析 26
伍、 參考資料 27
陸、 圖表 31
柒、 附錄 56
參考文獻 Aslam, A., Mittal, S., Koch, F., Andrau, J.-C., & Winkler, G. S. (2009). The Ccr4–NOT deadenylase subunits CNOT7 and CNOT8 have overlapping roles and modulate cell proliferation. Molecular biology of the cell, 20(17), 3840-3850.
Bai, Y., Salvadore, C., Chiang, Y.-C., Collart, M. A., Liu, H.-Y., & Denis, C. L. (1999). The CCR4 and CAF1 proteins of the CCR4-NOT complex are physically and functionally separated from NOT2, NOT4, and NOT5. Molecular and cellular biology, 19(10), 6642-6651.
Balatsos, N. A., Nilsson, P., Mazza, C., Cusack, S., & Virtanen, A. (2006). Inhibition of mRNA deadenylation by the nuclear cap binding complex (CBC). Journal of Biological Chemistry, 281(7), 4517-4522.
Brown, C. E., Tarun Jr, S. Z., Boeck, R., & Sachs, A. B. (1996). PAN3 encodes a subunit of the Pab1p-dependent poly (A) nuclease in Saccharomyces cerevisiae. Molecular and cellular biology, 16(10), 5744-5753.
Chou, W.-L., Huang, L.-F., Fang, J.-C., Yeh, C.-H., Hong, C.-Y., Wu, S.-J., & Lu, C.-A. (2014). Divergence of the expression and subcellular localization of CCR4-associated factor 1 (CAF1) deadenylase proteins in Oryza sativa. Plant molecular biology, 85(4-5), 443-458.
Collart, M. A., & Panasenko, O. O. (2012). The Ccr4–not complex. Gene, 492(1), 42-53.
Cortijo, S., Charoensawan, V., Brestovitsky, A., Buning, R., Ravarani, C., Rhodes, D., van Noort, J., Jaeger, K. E., & Wigge, P. A. (2017). Transcriptional regulation of the ambient temperature response by H2A. Z nucleosomes and HSF1 transcription factors in Arabidopsis. Molecular plant, 10(10), 1258-1273.
Daugeron, M.-C., Mauxion, F., & Séraphin, B. (2001). The yeast POP2 gene encodes a nuclease involved in mRNA deadenylation. Nucleic Acids Research, 29(12), 2448-2455.
Dehlin, E., Wormington, M., Körner, C. G., & Wahle, E. (2000). Cap‐dependent deadenylation of mRNA. The EMBO journal, 19(5), 1079-1086.
Deluen, C., James, N., Maillet, L., Molinete, M., Theiler, G., Lemaire, M., Paquet, N., & Collart, M. A. (2002). The Ccr4-Not complex and yTAF1 (yTafII130p/yTafII145p) show physical and functional interactions. Molecular and cellular biology, 22(19), 6735-6749.
Gao, M., Fritz, D. T., Ford, L. P., & Wilusz, J. (2000). Interaction between a poly (A)-specific ribonuclease and the 5′ cap influences mRNA deadenylation rates in vitro. Molecular cell, 5(3), 479-488.
Garneau, N. L., Wilusz, J., & Wilusz, C. J. (2007). The highways and byways of mRNA decay. Nature reviews Molecular cell biology, 8(2), 113-126.
Gasiunas, G., Barrangou, R., Horvath, P., & Siksnys, V. (2012). Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences, 109(39), E2579-E2586.
Govindaraj, M., Pattanashetti, S. K., Patne, N., & Kanatti, A. A. (2018). Breeding cultivars for heat stress tolerance in staple food crops. Next Generation Plant Breeding. London (UK): IntechOpen, 45-74.
Guo, M., Liu, J.-H., Ma, X., Luo, D.-X., Gong, Z.-H., & Lu, M.-H. (2016). The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Frontiers in plant science, 7, 114.
Gutiérrez, R. A., MacIntosh, G. C., & Green, P. J. (1999). Current perspectives on mRNA stability in plants: multiple levels and mechanisms of control. Trends in plant science, 4(11), 429-438.
Hata, H., Mitsui, H., Liu, H., Bai, Y., Denis, C. L., Shimizu, Y., & Sakai, A. (1998). Dhh1p, a putative RNA helicase, associates with the general transcription factors Pop2p and Ccr4p from Saccharomyces cerevisiae. Genetics, 148(2), 571-579.
Herrick, D., Parker, R., & Jacobson, A. (1990). Identification and comparison of stable and unstable mRNAs in Saccharomyces cerevisiae. Molecular and cellular biology, 10(5), 2269-2284.
Hou, Z., Zhang, Y., Propson, N. E., Howden, S. E., Chu, L.-F., Sontheimer, E. J., & Thomson, J. A. (2013). Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proceedings of the National Academy of Sciences, 110(39), 15644-15649.
Khan, S., Anwar, S., Ashraf, M. Y., Khaliq, B., Sun, M., Hussain, S., Gao, Z.-q., Noor, H., & Alam, S. (2019). Mechanisms and adaptation strategies to improve heat tolerance in rice. A review. Plants, 8(11), 508.
Kumar, S. V., & Wigge, P. A. (2010). H2A. Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell, 140(1), 136-147.
Lenssen, E., Oberholzer, U., Labarre, J., De Virgilio, C., & Collart, M. (2002). Saccharomyces cerevisiae Ccr4–Not complex contributes to the control of Msn2p‐dependent transcription by the Ras/cAMP pathway. Molecular microbiology, 43(4), 1023-1037.
Liang, W., Li, C., Liu, F., Jiang, H., Li, S., Sun, J., Wu, X., & Li, C. (2009). The Arabidopsis homologs of CCR4-associated factor 1 show mRNA deadenylation activity and play a role in plant defence responses. Cell research, 19(3), 307-316.
Liu, H.-Y., Chiang, Y.-C., Pan, J., Chen, J., Salvadore, C., Audino, D. C., Badarinarayana, V., Palaniswamy, V., Anderson, B., & Denis, C. L. (2001). Characterization of CAF4 and CAF16 reveals a functional connection between the CCR4-NOT complex and a subset of SRB proteins of the RNA polymerase II holoenzyme. Journal of Biological Chemistry, 276(10), 7541-7548.
Maillet, L., Tu, C., Hong, Y. K., Shuster, E. O., & Collart, M. A. (2000). The essential function of Not1 lies within the Ccr4-Not complex. Journal of molecular biology, 303(2), 131-143.
Martı̂nez, J., Ren, Y.-G., Nilsson, P., Ehrenberg, M., & Virtanen, A. (2001). The mRNA cap structure stimulates rate of poly (A) removal and amplifies processivity of degradation. Journal of Biological Chemistry, 276(30), 27923-27929.
Mittal, S., Aslam, A., Doidge, R., Medica, R., & Winkler, G. S. (2011). The Ccr4a (CNOT6) and Ccr4b (CNOT6L) deadenylase subunits of the human Ccr4–Not complex contribute to the prevention of cell death and senescence. Molecular biology of the cell, 22(6), 748-758.
Molin, L., & Puisieux, A. (2005). C. elegans homologue of the Caf1 gene, which encodes a subunit of the CCR4-NOT complex, is essential for embryonic and larval development and for meiotic progression. Gene, 358, 73-81.
Morita, M., Suzuki, T., Nakamura, T., Yokoyama, K., Miyasaka, T., & Yamamoto, T. (2007). Depletion of mammalian CCR4b deadenylase triggers elevation of the p27 Kip1 mRNA level and impairs cell growth. Molecular and cellular biology, 27(13), 4980-4990.
Opyrchal, M., Anderson, J. R., Sokoloski, K. J., Wilusz, C. J., & Wilusz, J. (2005). A cell-free mRNA stability assay reveals conservation of the enzymes and mechanisms of mRNA decay between mosquito and mammalian cell lines. Insect biochemistry and molecular biology, 35(12), 1321-1334.
Richter, K., Haslbeck, M., & Buchner, J. (2010). The heat shock response: life on the verge of death. Molecular cell, 40(2), 253-266.
Sakai, A., Chibazakura, T., Shimizu, Y., & Hishinuma, F. (1992). Molecular analysis of POP2 gene, a gene required for glucose-derepression of gene expression in Saccharomyces cerevisiae. Nucleic Acids Research, 20(23), 6227-6233.
Sander, J. D., & Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature biotechnology, 32(4), 347-355.
Saritha, A. (2004). Assessment of Seed Dormancy Duration and Breaking Methods in Rice Genotypes (Oryza Sativa L.) ANGRAU ACH: SEED SCIENCE & TECHNOLOGY].
Shah, F., Huang, J., Cui, K., Nie, L., Shah, T., Chen, C., & Wang, K. (2011). Impact of high-temperature stress on rice plant and its traits related to tolerance. The Journal of Agricultural Science, 149(5), 545-556.
Temme, C., Zaessinger, S., Meyer, S., Simonelig, M., & Wahle, E. (2004). A complex containing the CCR4 and CAF1 proteins is involved in mRNA deadenylation in Drosophila. The EMBO journal, 23(14), 2862-2871.
Walley, J. W., Kelley, D. R., Nestorova, G., Hirschberg, D. L., & Dehesh, K. (2010). Arabidopsis deadenylases AtCAF1a and AtCAF1b play overlapping and distinct roles in mediating environmental stress responses. Plant physiology, 152(2), 866-875.
Wang, C., Zhang, Q., & Shou, H.-x. (2009). Identification and expression analysis of OsHsfs in rice. Journal of Zhejiang University Science B, 10(4), 291-300.
Xu, Y., Chu, C., & Yao, S. (2021). The impact of high-temperature stress on rice: Challenges and solutions. The Crop Journal, 9(5), 963-976. https://doi.org/https://doi.org/10.1016/j.cj.2021.02.011
Yamashita, A., Chang, T.-C., Yamashita, Y., Zhu, W., Zhong, Z., Chen, C.-Y. A., & Shyu, A.-B. (2005). Concerted action of poly (A) nucleases and decapping enzyme in mammalian mRNA turnover. Nature structural & molecular biology, 12(12), 1054-1063.
Zhang, X.-H., Tee, L. Y., Wang, X.-G., Huang, Q.-S., & Yang, S.-H. (2015). Off-target effects in CRISPR/Cas9-mediated genome engineering. Molecular Therapy-Nucleic Acids, 4, e264.
指導教授 陸重安 審核日期 2022-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明