博碩士論文 108226066 詳細資訊

本論文永久網址:   


以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.14.9.169
姓名 楊博智(Po-Chih Yang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 絕緣體上鈮酸鋰薄膜光電元件製程開發與應用 - 電光調製器
(Fabrication and application of Lithium Niobate on Insulator optoelectronic device - Electro-Optic Modulators)
相關論文
★ Continuous-wave narrow-line yellow laser generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings★ 半導體雷射泵浦內建式Q-調制Nd:MgO:PPLN雷射之研究
★ 主動式多通道窄頻寬通Ti:PPLN波導濾波及模態轉換器之研究★ 以鎂掺雜鈮酸鋰製作二倍頻藍光雷射波導元件之製程研究
★ 非週期性晶格極化反轉鈮酸鋰作為主動式窄頻寬通多波長濾波器及倍頻多波長濾波器★ 非週期性晶格極化反轉鈮酸鋰作為有效率的二倍頻和模態轉換器之研究
★ 積體式週期與非週期極性反轉鈮酸鋰光電與雷射元件★ 退火式質子交換波導PPLN電光調制TM模態轉輻射偏振態之研究
★ 高效率雙Nd:YVO4 雷射和頻黃光產生系統★ 以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主動式Q-調制Nd:YVO4雷射
★ 以單塊二維週期性晶格極化反轉鈮酸鋰同時作為Nd:YVO4雷射之電光Q調制器和腔內光參量振盪器★ 綠光準相位匹配二倍頻質子交換鎂摻雜鈮酸鋰波導的製程研究
★ 以單晶片串級式週期性準相位匹配波長轉換器與非週期性準相位匹配電光偏振模態轉換器達成主動式調制窄頻輸出光參量振盪器之研究★ 單片非週期性晶疇極化反轉鈮酸鋰同時作為Nd:YVO4雷射Q-調制和腔內光參量產生之研究
★ 準相位匹配二倍頻軟質子交換鎂摻雜鈮酸鋰波導研究★ 以雙體積全像布拉格光柵及二維週期性晶疇極化反轉鈮酸鋰於Nd:YVO4雷射內達成脈衝式窄頻光參量振盪器之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 薄膜鈮酸鋰 (TFLN) 調製器有望成為實現下一代光通信系統所需的超寬調
製帶寬的理想元件,自從光纖通信出現以來,鈮酸鋰(LN)一直是電光調製器最
好的材料。然而,傳統的 LN 調製器體積龐大、價格昂貴且耗電,無法滿足需求。
製作在晶片上的 TFLN 調製器可以解決這個問題,但在 TFLN 中製造低損耗元
件不是一件簡單的事。在這裡,我們成功製作了 LN 電光調製器,該調製器比傳
統的塊狀 LN 元件小很多且效率更高,同時保留了 LN 的優異材料特性。在量子
領域,我們可以透過鈮酸鋰優異的電光效應,減少製程誤差對量子邏輯閘造成的
影響,甚至可以搭配其他 LN 製程,製造量子光源,並將光源與邏輯閘整合至單
晶片上,實現 System On Chip 的理想。
本實驗根據不同的鈮酸鋰波導備置方法進行系統性測試,並嘗試將其改良成
本實驗室製程設備允許的條件,以利本實驗室自行製作低損耗的 LNOI 波導。在
元件方面,我們以 I-line 曝光機、PECVD、ICP-RIE、離子佈植機、PVD 等半導
體相關技術,製造直波導以及帶有電極的 Mach–Zehnder Modulator (MZM),製作
不同寬度之直波導,分別對其進行量測,在直波導的製作基礎下,利用鈮酸鋰的
優異電光效應製作電光調製器,並將其應用在 MZM 上。
波導製程方面,分為兩部份,第一部份是利用 ICP-RIE,以 Argon 離子進行
物理性蝕刻的 Ion Etching,第二部份是利用離子佈植的 IBEE(Ion-beam enhanced
etching)。其中,我們以 IBEE 製程成功在鈮酸鋰薄膜上製作出寬度 1~3um,蝕刻
深度 380nm,蝕刻側壁接近 90°,總長 0.5cm 的脊型波導,搭配端面拋光的技術,
並以側邊耦光的方式,測量其模態及損耗,在 TM 偏振下,3、2、1.5um 波導的
傳波損耗分別為 7.16dB/cm、6.76dB/cm、5.65dB/cm;在 TE 偏振下,3、2、1.5um
波導的傳波損耗分別為 3.6dB/cm、7.87dB/cm、3.96dB/cm。
另一方面,我們製作帶有電極的 MZM 結構,並對其單臂進行電光調製,調
製臂長為 1mm 的調製器,測得其 Vπ 為 50V,對應的電壓長度乘積為 5V·cm。
ii
在未來,能夠將傳統的塊狀 LN 調製器以 TFLN 製作的電光調製器取代,能
夠有效縮小元件尺寸,若搭配 CMOS 晶片驅動電壓,可作為光纖通訊裡的重要元
件,因其優於矽基材料的特性,TFLN 具有更多優勢,有機會在 TFLN 上實現光
量子邏輯閘及量子光源。
摘要(英) Electro-optic modulators made of thin-film lithium niobate (TFLN) are expected
to be ideal components for realizing the ultra-wide modulation bandwidth, which are
required by next-generation optical communication systems. Since the invention of
optical fiber communication, lithium niobate (LN) has always been the best material for
electro-optic modulator. However, the traditional LN modulator is bulky, expensive and
power-consuming, and cannot meet the demand. The TFLN modulator can solve this
problem, but it is not easy to fabricate low-loss components on the TFLN substrate.
Here, we have successfully fabricated a LN electro-optic modulator, which is much
smaller and more efficient than the traditional bulk LN components, while preserving
the excellent material properties of LN. In the quantum field, we can reduce the impact
of process errors on quantum logic gates through the excellent electro-optical effect of
lithium niobate, and even use other LN processes to assemble quantum light sources,
integrate the light sources and logic gates on a single chip in order to achieve the ideal
of System On Chip (SOC).
This work carried out a systematic test based on different lithium niobate
waveguide preparation methods and tried to improve it to the conditions allowed by our
laboratory process equipment. Consequently, our laboratory can make low-loss LNOI
waveguides by ourselves. About fabrication method, we use I-line stepper, PECVD,
ICP-RIE, ion implanter, PVD and other semiconductor-related technologies to create
straight waveguides and Mach-Zehnder Modulator (MZM) with electrodes. We
produced different – width straight waveguides and measured them separately. After the
straight – waveguide fabrication, an electro-optic modulator is made because of the
excellent electro-optic effect of lithium niobite. This structure is used to create the MZM.
The waveguide manufacturing process is divided into two parts. The first part is
iv
Ion Etching that uses ICP-RIE by Argon ions, and the second part is IBEE (Ion-beam
enhanced etching) that uses ion implantation. We successfully used I-line stepper to
fabricate ridge waveguides with the minimum width around 1um, etching depth reaches
380nm, sidewall angle close to 90°, and total length of 0.5cm on the lithium niobate
film by the IBEE process. This is more efficient than using e-beam lithography. After
the end face polishing, we use edge coupling to measure the waveguide mode and
propagation loss. Propagation losses of 3.9 dB/cm for TE and 6 dB/cm for TM
polarization were measured at 1550 nm for a 5 mm long and 1.5µm wide waveguide
using the Fabry-Perot method.
In addition, we made an MZM structure with electrodes, and electro-optically
modulate the light of single arm. The modulator with a modulating
length of 1mm measured by the value of VπL ~5V·cm.
In the future, the traditional bulk LN modulator can be replaced with an electrooptic modulator made of TFLN, which can effectively reduce the component size. If it
is matched with the CMOS chip driving voltage, it can be used as an important
component in optical fiber communication. Because of its superiority to silicon-based
materials, TFLN has more advantages and could implement optical quantum logic gates
and quantum light sources on TFLN.
關鍵字(中) ★ 鈮酸鋰
★ 麥克森調製器
★ 波導
★ 電光效應
★ 非線性效應
★ 電光調製器
★ 薄膜鈮酸鋰
關鍵字(英) ★ Lithium Niobate
★ Electro-Optic Modulator
★ Electro-Optic effect
★ waveguide
★ non-linear effect
★ LNOI
★ TFLN
論文目次 中文摘要……………………………………………………………………….i
Abstract..............................................................................................iii
誌謝...........................................................................................v
目錄…………………………………………………..………………….vii
圖目錄……………………………………………………………………ix
表目錄……………………………………………………………….…..xv
第一章 緒論……………………………………………………………..1
1.1 積體光學歷史簡介……………………………………….......…………….1
1.2 電光調製器(Electro-Optic Modulator)..........................................................1
1.3 光波導材料....................................................................................................2
1.3.1 SOI........................................................................................................2
1.3.2 LN..........................................................................................................2
1.3.3 LNOI.....................................................................................................4
1.4 研究動機........................................................................................................5
1.5 內容概要........................................................................................................7
1.6 文獻會顧........................................................................................................8
第二章 實驗原理......................................................................................9
2.1 波導................................................................................................................9
2.2 電光效應(Electro–Optic effect)-Pockels effect.............................................9
2.3 麥克森調製器(Mach-Zehnder Modulator,MZM)...............................12
第三章 晶片設計及模擬結果................................................................19
3.1 LNOI基板...................................................................................................19
3.2 元件設計與模擬..........................................................................................21
第四章 元件製程製造............................................................................29
4.1 前段遮罩製作及實驗相關儀器..................................................................29
4.1.1 晶圓切割與前清理............................................................................29
4.1.2 薄膜沉積............................................................................................31
4.1.3 蝕刻....................................................................................................36
4.1.4 黃光微影............................................................................................43
4.1.5 離子佈植............................................................................................45
4.1.6 遮罩蝕刻參數....................................................................................48
4.2 鈮酸鋰波導與MZM製程..........................................................................55
4.2.1 Ion Etching..........................................................................................55
4.2.2 Ion Beam Enhance Etching.................................................................61
4.3 晶片清理與後段製程加工處理..................................................................71
4.3.1 晶片清理...................................................................................71
4.3.2 電極沉積...................................................................................74
4.3.3 端面拋光...................................................................................77
4.4 Ion Etching 製程改善........................................................................79
4.4.1 遮罩改善...................................................................................79
4.4.2 製程設備改善...........................................................................80
4.4.3 蝕刻參數改善...........................................................................81
4.4.4電極改善....................................................................................81
第五章 實驗結果與分析........................................................................83
5.1 量測架構......................................................................................................83
5.1.1 波導量測架構....................................................................................83
5.1.2 MZM量測架構..................................................................................85
5.2 實驗量測結果及分析..................................................................................88
5.2.1直波導量測結果及分析.....................................................................88
5.2.2 MZM量測結果..................................................................................92
第六章 實驗結果與分析........................................................................96
6.1 結論..............................................................................................................96
6.2 未來展望......................................................................................................96
第七章 參考文獻..................................................................................98
參考文獻 [1] Rong Haisheng , Jones Richard , Liu Ansheng , Cohen Oded , Hak Dani , Fang
Alexander , Paniccia Mario , “A continuous-wave Raman silicon laser.” , Nature, 433
(7027) , p.725–728 , February 2005.
[2] Chen, Roger, et al. "Nanophotonic integrated circuits from nanoresonators grown on
silicon." Nature communications 50, p.4325. (2014).
[3] Kaminow I, Ramaswamy V, Schmidt R, Turner E. “Lithium niobate ridge waveguide
modulator.”, Applied Physics Letters. , 24(12) , p.622–624. , 1974.
[4] G. K. Celler , Sorin Cristoloveanu , “Frontiers of silicon-on-insulator.”, Journal of Applied
Physics 93, 4955 (2003)
[5] B. T. Matthias and J. P. Remeika , “Ferroelectricity in the Ilmenite Structure.”, Phys. Rev.
76, 1886 , December 1949
[6] R. L. Byer , J. F. Young , F. S. Feigelson , “Growth of High-Quality LiNbO3 Crystals from
the Congruent Melt”, J. Appl. Phys. , 41 , 2320 , (1970).
[7] Volk Tatyana , Wohlecke Manfred , “Lithium Niobate: Defects, Photorefraction and
Ferroelectric Switching.” , Springer. , 2008
[8] Bazzan M. , Sada C. , “Optical waveguides in lithium niobate: recent developments and
applications.” , Appl. Phys , Rev. 2 , 040603 (2015).
[9] Hu X. P. , Xu P. , Zhu S. N. , “Engineered quasi-phase-matching for laser
techniques.” , Photonics , Photonics Res. 1, 171–185 , (2013).
[10] Wang T. X. , et al. , “Periodically poled LiNbO3 crystals from 1D and 2D to 3D.” , Sci.
China Technol , Sci. 63 , 1110–1126 , (2020).
[11] 胡塵滌 , “LNO/Si 異質晶圓接合與界面性質研究研究成果報告” , 行政院國家科學
委員會專題研究計畫成果報告 , 2007
[12] G. Poberaj , H. Hu , W. Sohler , P. Günter , “Lithium niobate on insulator (LNOI) for
micro-photonic devices.” , Laser & Photonics Reviews , Volume 6 , Issue 4 , p. 488-503 ,
(2012).
[13] T.C.Ralph , N.K.Langford , T.B.Bell , A.G.White , “Linear optical controlled-NOT gate
in the coincidence basis.” , Phys , Rev , A65 , 062324 , June 2002
[14] QIAN ZHANG , MENG LI , YANG CHEN , XIFENG REN , ROBERTO OSELLAME ,
QIHUANG GONG , AND YAN LI , “Femtosecond laser direct writing of an integrated
path-encoded CNOT quantum gate.” , Optical Materials Express , 2318 , Vol. 9 , No. 5 ,
May 2019
[15] Peter O. Weigel , “High-Speed Hybrid Silicon-Lithium Niobate Electro-Optic Modulators
& Related Technologies” , UNIVERSITY OF CALIFORNIA SANDIEGO , Doctor of
Philosophy , 2018
[16] Jintian Lin , Junxia Zhou , Rongbo Wu , Min Wang , Zhiwei Fang , Wei Chu , Jianhao
Zhang , Lingling Qiao , Ya Cheng , “High-Precision Propagation-Loss Measurement of
Single-Mode Optical Waveguides on Lithium Niobate on Insulator.” , Micromachines ,
10(9) , 612 , 2019
[17] Harvard school of Engineering , “Now entering , Lithium Niobate Valley.” , New & Event ,
2017.
[18] Zhang M. , Wang C. , Cheng R. , Shams-Ansari A. , Lončar, M. , “Monolithic ultrahigh-Q lithium niobate microring resonator.” , Optica , 4 , 1536-1537 , (2017).
[19] Chen Zhihua , et al. , “Grating coupler on lithium niobate thin film waveguide with a
metal bottom reflector.” , Optical Materials Express , 7.11 , p.4010-4017. , (2017).
[20] Krasnokutska Inna , et al. , “Ultra-low loss photonic circuits in lithium niobate on
insulator.” , Optics express , 26.2 , p. 897-904. , (2018).
[21] Baghban Mohammad Amin , et al. , “Bragg gratings in thin-film LiNbO3
waveguides.” Optics Express , 25.26 , p. 32323-32332. , (2017).
[22] Dehui Sun , Yunwu Zhang , Dongzhou Wang , Wei Song , Xiaoyan Liu , Jinbo Pang ,
Deqiang Geng , Yuanhua Sang , Hong Liu , “Microstructure and domain engineering of
lithium niobate crystal films for integrated photonic applications. ”, Science &
Applications , Science & Applications volume 9 , Article number: 197 , (2020)
[23] Mohamed Mahmoud , Lutong Cai , Christian Bottenfield , Gianluca Piazza , “Lithium
Niobate Electro-Optic Racetrack Modulator Etched in Y-Cut LNOI Platform.”, IEEE ,
Volume:10 Issue:1 , 2018
[24] Green William MJ , et al. , “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder
modulator.” , Optics express , 15.25 , p.17106-17113. (2007).
[25] Sasaki Hiroshi , Iain Anderson. , “Theoretical and experimental studies on active
Yjunctions in optical waveguides.” , IEEE Journal of Quantum Electronics , 14.11 , p.883-
892. , (1978).
[26] Anderson Iain. , “Transmission performance of Y-junctions in planar dielectric
waveguide.” IEE Journal on Microwaves , Optics and Acoustics 2.1 , p.7. , (1978).
[27] Ulliac Gwenn , et al. , “Argon plasma inductively coupled plasma reactive ion etching
study for smooth sidewall thin film lithium niobate waveguide application.” , Optical
Materials , 53, (2016).
[28] REINHARD GEISS , SINA SARAVI , ANTON SERGEYEV , SÉVERINE DIZIAIN ,
FRANK SETZPFANDT , FRANK SCHREMPEL , RACHEL GRANGE , ERNSTBERNHARD KLEY , ANDREAS TÜNNERMANN , THOMAS PERTSCH ,
“Fabrication of nanoscale lithium niobite waveguides for second-harmonic generation.”,
Optics Letters , Vol. 40 , No. 12 , June 15 2015.
[29] Ye Liu , Heng Li , Jia Liu , Su Tan , Qiaoyin Lu , Weihua Guo , “ Low Vπ thin-film lithium
niobate modulator fabricated with photolithography.” , Optics Express , Vol. 29 , Issue 5 ,
pp. 6320-6329 , (2021)
[30] Han H , Xiang B , “Integrated electro-optic modulators in x-cut lithium niobate thin film” ,
Optik , (2020).
[31] J. W. Coburn , Harold F. Winters , “ Ion‐ and electron‐assisted gas‐surface chemistry—An
important effect in plasma etching.” , Journal of Applied Physics , 50 , 3189 , (1979)
[32] Lieberman Michael A. , Lichtenberg Allan J. , “Principles of plasma discharges and
materials processing.” , (2nd ed.) , Hoboken, N.J. , 546., (2005)
[33] USBC , “Cr etching” , UCSB Nanofabrication Facility.
[34] Bill Mitchell , “Panasonic 2 Nanoscale ICP etching of SiO2 using ZEP (resist) mask.
Recipe designed to provide vertical profiles with no trenching in nanoscale features.” ,
UCSB Nanofabrication Facility.
[35] Sipan Yang , Yaqian Li , Jinbin Xu , Min Wang , Liying Wu , Xueling Quan , Min Liu ,
Liucheng Fu , Xiulan Cheng , “Low loss ridge-waveguide grating couplers in lithium
niobate on insulator” , Optical Materials Express , Vol. 11 , Issue 5 , pp. 1366-1376 , (2021)
[36] Schrempel, F., Gischkat, T., Hartung, H., Kley, E. B., & Wesch, W. , “Ion beam enhanced
etching of LiNbO3.” , Nuclear Instruments and Methods in Physics Research Section B:
Beam Interactions with Materials and Atoms, 250(1 -2), 164-168. (2006).
[37] Geiss, R., Brandt, J., Hartung, H., Tünnermann, A., Pertsch, T., Kley, E. B., & Schrempel,
F. , “Photonic microstructures in lithium niobate by potassium hydroxide-assisted ion
beam-enhanced etching.” , Journal of Vacuum Science & Technology B, Nanotechnology
and Microelectronics: Materials, Processing, Measurement, and Phenomena, 33(1),
010601. (2015).
[38] Wang, C., Zhang, M., Stern, B., Lipson, M., & Lončar, M. , “Nanophotonic lithium niobate
electro-optic modulators.” , Optics express, 26(2), 1547-1555. (2018).
[39] Regener, R., & Sohler, W. , “Loss in low-finesse Ti: LiNbO 3 optical waveguide
resonators.” , Applied physics B, 36(3), 143-147. (1985)
[40] Hu, H., Ricken, R., & Sohler, W. , “Lithium niobate photonic wires.” , Optics express,
17(26), 24261-24268. (2009).
[41] Krasnokutska, I., Tambasco, J. L. J., Li, X., & Peruzzo, A. , “Ultra-low loss photonic
circuits in lithium niobate on insulator.” , Optics express, 26(2), 897-904. (2018).
[42] Volk, M. F., Suntsov, S., Rüter, C. E., & Kip, D. , “Low loss ridge waveguides in lithium
niobate thin films by optical grade diamond blade dicing.” , Optics express, 24(2), 1386-
1391. (2016).
[43] Wang, C., Zhang, M., Chen, X., Bertrand, M., Shams-Ansari, A., Chandrasekhar, S., ... &
Lončar, M. , “Integrated lithium niobate electro-optic modulators operating at CMOScompatible voltages. “, Nature, 562(7725), 101-104. (2018)
指導教授 陳彥宏 審核日期 2021-12-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明