博碩士論文 108421071 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:52.14.93.232
姓名 鄧俊祥(Jun-Xiang Deng)  查詢紙本館藏   畢業系所 企業管理學系
論文名稱 以人體姿態識別ATM提款動作之研究
(Research on ATM Withdrawal Action by Human Activity Recognition)
相關論文
★ 探索汽油價格變動對消費者選擇產品之影響 -以某超級市場為例★ 以工單排程方式優化契約容量之研究
★ 經濟指標與社群媒體情感之關聯性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-3-14以後開放)
摘要(中) 人體姿態識別在近年來廣泛的應用在醫療、運動、嬰兒老人監控以及犯罪監視等 等,而在目前人體姿態識別上較多人使用的為 Openpose,因為它有著簡易的特性, 不需要高階攝像頭,以普通 2D 的 RGB 圖像即可達成關節點估計,不僅僅可以偵測身 體支點,同時也可以偵測手部以及臉部關節點。本研究將此運用於車手和非車手的 ATM 提領影片中,再透過和專業警員的訪談,得出車手在 ATM 提領時的動作特徵, 分別為插卡、看手機、左顧右盼、取錢和清點等等,然而將影片所得出之座標點轉換 為特徵值,以特徵值的方式去描述 ATM 提領的動作特徵,又因所述動作特徵在影片裡 佔比偏低,資料有不平衡情況,所以本研究透過 n gram 以及 undersampling 的方式, 利用深度學習模型雙向 LSTM(Long Short-term memory 長短期記憶模型)進行判 斷,以追求較高的精確率和召回率。
摘要(英) In recent years, human activity recognition(HAR) has been widely used in health-care, sports, baby and elderly monitoring and crime surveillance, etc. At present, Openpose is used by most people in HAR, because it has simple characteristics and does not A high-level camera is needed, and the joint point estimation can be achieved with ordinary 2D RGB images. It can not only detect the body joint, but also the hand and face joint points. Our study applies Openpose to the ATM withdrawal videos of moneymule and non-moneymule, and then through interviews with professional police officers, we can get the characteristics of the driver′s actions when withdrawing from the ATM. It including inserting a card, looking at the phone, looking around, and withdrawing money,and counting, etc. However, we convert the coordinate points obtained from the film into feature, and describe the action characteristics of ATM withdrawal in the form of feature. Also, because the action features occupy a low proportion in the video, the data is imbalance, so we use the deep learning model, bi-LSTM (Long Short-term memory model) to make evaluate in the way of n gram and undersampling, in order to pursue a higher precision and recall rate.
關鍵字(中) ★ 車手
★ openpose
★ lstm
★ atm
關鍵字(英) ★ money mule
★ openpose
★ lstm
★ atm
論文目次 摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 ix
第1章 緒論 1
1-1 研究背景 1
1-2 研究動機 4
1-3 研究目的 5
1-4 研究架構 6
第2章 文獻探討 7
2-1 OPENPOSE人體姿態識別 7
2-2 利用LSTM對動作進行判斷 8
2-3 ATM影片研究 9
第3章 研究方法 10
3-1 研究流程 10
3-2 OPENPOSE人體姿態識別 11
3-3 車手動作 13
3-4 特徵值 15
3-5 LONG SHORT-TERM MEMORY長短期記憶模型 20
3-6 評估模型 26
第4章 研究實驗 28
4-1 資料蒐集 28
4-2 資料預處理 29
4-2-1 影片挑選 29
4-2-2影片擷取 29
4-2-3利用Openpose將關節點轉換為座標點 30
4-2-4標記動作 31
4-2-5轉換為特徵值 31
4-2-6 N gram 32
4-2-7 Undersampling 33
4-3 LSTM實驗過程 34
4-4 實驗結果比較 39
4-3-1 插卡 40
4-3-2 左顧右盼 44
4-3-3 清點 48
4-5 小結 54
第5章 結論 56
5-1 研究結論 56
5-2 研究限制以及未來研究 57
參考文獻 58
參考文獻 參考文獻
[1] Sikandar, T., Ghazali, K. H., & Rabbi, M. F. (2019). ATM crime detection using image processing integrated video surveillance: a systematic review. Multimedia Systems, 25(3), 229-251.
[2] Parab, A., Nikam, A., Mogaveera, P., & Save, A. (2020). A New Approach to Detect Anomalous Behaviour in ATMs. Paper presented at the 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS).
[3] Khaire, P. A., & Kumar, P. (2021). RGB+ D and deep learning-based real- time detection of suspicious event in Bank-ATMs. Journal of Real-Time Image Processing, 18(5), 1789-1801.
[4] Yogameena, B., & Janani, R. (2021). Abnormal Activity-Based Video Synopsis by Seam Carving for ATM Surveillance Applications. Paper presented at the International Conference on Innovative Computing and Communications.
[5] Ashokan, V., & Murthy, O. R. (2017). Comparative evaluation of classifiers for abnormal event detection in ATMs. Paper presented at the 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT).
[6] Nar, R., Singal, A., & Kumar, P. (2016). Abnormal activity detection for bank ATM surveillance. Paper presented at the 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI).
[7] Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., & Sheikh, Y. (2019). OpenPose: realtime multi-person 2D pose estimation using Part Affinity Fields. IEEE transactions on pattern analysis and machine intelligence, 43(1), 172-186.
[8] Viswakumar, A., Rajagopalan, V., Ray, T., & Parimi, C. (2019). Human gait analysis using OpenPose. Paper presented at the 2019 Fifth International Conference on Image Information Processing (ICIIP).
[9] Ripperda, J., Drijvers, L., & Holler, J. (2020). Speeding up the detection of non-iconic and iconic gestures (SPUDNIG): A toolkit for the automatic detection of hand movements and gestures in video data. Behavior research methods, 52(4), 1783-1794.
[10] Firdaus, N. M., & Rakun, E. (2019). Recognizing fingerspelling in sibi (sistem isyarat bahasa indonesia) using openpose and elliptical fourier descriptor. Paper presented at the Proceedings of the international conference on advanced information science and system.
[11] Mazhar, O., Navarro, B., Ramdani, S., Passama, R., & Cherubini, A. (2019). A real-time human-robot interaction framework with robust background invariant hand gesture detection. Robotics and Computer-Integrated Manufacturing, 60, 34-48.
[12] Okumura, T., Urabe, S., Inoue, K., & Yoshioka, M. (2018). Cooking activities recognition in egocentric videos using hand shape feature with openpose.
Paper presented at the Proceedings of the Joint Workshop on Multimedia for
Cooking and Eating Activities and Multimedia Assisted Dietary Management.
[13] Avola, D., Cinque, L., De Marsico, M., Fagioli, A., & Foresti, G. L. (2020). LieToMe: Preliminary study on hand gestures for deception detection via
Fisher-LSTM. Pattern Recognition Letters, 138, 455-461.
[14] Qiao, S., Wang, Y., & Li, J. (2017). Real-time human gesture grading based on OpenPose. Paper presented at the 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics
(CISP-BMEI).
[15] Angelini, F., Fu, Z., Long, Y., Shao, L., & Naqvi, S. M. (2019). 2d pose-based
real-time human action recognition with occlusion-handling. IEEE
Transactions on Multimedia, 22(6), 1433-1446.
[16] Noori, F. M., Wallace, B., Uddin, M. Z., & Torresen, J. (2019). A robust
human activity recognition approach using openpose, motion features, and deep recurrent neural network. Paper presented at the Scandinavian conference on image analysis.
[17] Yadav, S. K., Singh, A., Gupta, A., & Raheja, J. L. (2019). Real-time Yoga recognition using deep learning. Neural Computing and Applications, 31(12), 9349-9361.
[18] Chen, Y., Li, W., Wang, L., Hu, J., & Ye, M. (2020). Vision-based fall event detection in complex background using attention guided bi-directional LSTM. IEEE Access, 8, 161337-161348.
[19] Bandara, I., & Bačić, B. (2020). Strokes Classification in Cricket Batting Videos. Paper presented at the 2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA).
[20] Lee, W.-K., Leong, C.-F., Lai, W.-K., Leow, L.-K., & Yap, T.-H. (2018). ArchCam: Real time expert system for suspicious behaviour detection in ATM site. Expert Systems with Applications, 109, 12-24.
[21] Ding, N., Chen, Y., Zhong, Z., & Xu, Y. (2010). Energy-based surveillance systems for ATM machines. Paper presented at the 2010 8th World Congress on Intelligent Control and Automation.
[22] Ray, S., Das, S., & Sen, A. (2015). An intelligent vision system for monitoring security and surveillance of ATM. Paper presented at the 2015 Annual IEEE India Conference (INDICON).
[23] Tripathi, V., Mittal, A., Gangodkar, D., & Kanth, V. (2019). Real time security framework for detecting abnormal events at ATM installations. Journal of Real-Time Image Processing, 16(2), 535-545.
[24] Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A next-generation hyperparameter optimization framework. Paper presented at the Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining.
指導教授 許秉瑜 沈國基(Ping-Yu Hsu Guy-Ji Sheen) 審核日期 2022-3-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明