博碩士論文 105329012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:18.191.176.66
姓名 宋欣懋(Sin-Mao Song)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 鎂鋅鈣金屬玻璃及其複材應用於生醫植入物之研究
(Study on the application of Mg-based bulk metallic glass and bulk metallic glass composite in biomedical implants)
相關論文
★ (Zr48Cu36Al8Ag8)99.25Si0.75複材高溫塑性行為之研究★ 具鉭顆粒散布強化之鐵基金屬玻璃複材的合成及其性質之研究
★ 鋯摻雜對SrCe1-xZrxO3-δ (0.0≦x≦0.5) 氫傳輸透膜微結構與性質影響之研究★ 適用於生物駐植物之無毒鈦基金屬玻璃之合金設計
★ 利用急冷旋鑄及真空熱壓製備Zn4Sb3奈米/微米晶塊材之熱電性質與機械性質研究★ 鐵顆粒添加對鎂鋅鈣非晶質合金熱性質及機械性質影響之研究
★ Ba0.8Sr0.2Ce0.8-x-yZryInxY0.2O3-δ(x=0.05,0.1 y=0,0.1)固態氧化物燃料電池電解質材料燒 結能力、微結構與其導電性質之研究★ 鋯基與鈦基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質改善之研究
★ 添加鉭對鋯鋁鈷塊狀非晶質合金機械性質影響之研究★ 鐵基塊狀金屬玻璃熱塑成形性之研究
★ 鋯基金屬玻璃薄膜對鎂基塊狀金屬玻璃複材之機械性質與抗腐蝕性提升之研究★ 微量鉭顆粒添加對鋯-銅-鋁-鈷塊狀非晶質合金鋯銅析出相的演變及機械性質之影響
★ 雷射積層製造用鐵基金屬玻璃粉末與其工件性質之研究★ 鐵基金屬玻璃破裂韌性提升 及其積層製造用粉體製作之研究
★ 質子傳輸型固態氧化物燃料電池之陽極支撐電解質材料製作及其性能之研究★ 生物相容性鈦基金屬玻璃合金粉末用於積層製造之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-20以後開放)
摘要(中) 鎂基金屬玻璃因其優異的機械性質、安全的生物相容性及具可降解性,其應用於生醫植入物已受到科學家及臨床上的關注,但其本質上的脆性限制其實際應用。本研究選擇較佳玻璃成形能力的Mg66Zn29Ca5為基礎材料,以外添加金屬顆粒的方式來提升鎂基金屬玻璃的破裂韌性,本研究選擇添加3種具有生物相容性的微米級金屬顆粒,分別為鈦鋯基金屬玻璃顆粒、鐵金屬顆粒及多孔鉬金屬顆粒,其添加量以5到30 Vol.%為實驗參數,其中以多孔鉬顆粒表現最為顯著,在20 Vol.%的多孔鉬添加下,3mm柱狀試片其破裂韌性從基材的1.1 MPa‧m1/2提升到6.01 MPa‧m1/2及機械強度仍維持在672MPa,然而在4 mm的棒狀試片中,明顯的結晶物析出於鎂基金屬玻璃及其複材中,限制了生醫植入物的應用,因此我們設計出以鎂棒為核、金屬玻璃為殼的核殼結構企圖突破金屬玻璃其尺寸上的限制,實驗結果亦顯示核殼結構有效提升外圍金屬玻璃其玻璃形成能力及維持適當的機械強度,在6週相關生醫試驗過後,證明其有效調控降解速率及維持在人體的機械性質,且仍維持良好的生物相容性及幫助骨細胞成長。
對於生醫植入物而言,細胞附著能力是被受關注的議題,表面粗糙度對骨細胞的初始附著及成長有極大的影響,本研究利用3種不同號的砂紙#240、#800、#2000來探討金屬玻璃表面粗糙度對降解能力、MG63骨細胞附著能力及成長能力,研究結果顯示表面粗糙度對鎂基金屬玻璃降解能力沒有顯著的影響,而較粗糙的表面具有較佳的鈣離子堆積能力,在#800號砂紙處理過後的表面具有較佳的MG63細胞附著性及提供較佳的遷移環境
過快的降解性質是鎂合金應用於生醫植入物的重大問題,本研究利用鎂基金屬玻璃鍍於ZK60鎂合金上,以此改善其機械性質及調控其降解能力。鎂基金屬玻璃薄膜成功藉由真空濺鍍法製備於ZK60鎂合金基板上,鎂基金屬薄膜與ZK60基板間具有良好的附著性並有效提升機械性及抗腐蝕能力,在機械性質方面,表面硬度提升至204Hv及抗彎曲能力從216MPa提升至254MPa,在抗腐蝕能力方面,其腐蝕電流從2.88 × 10-5 A/cm2降至1.66 × 10-6 A/cm2。
摘要(英) Mg-based bulk metallic glass(BMG) and its composites have been investigated for their huge potential for application in orthopedic implants due to their biocompatibility, low degradation rate, and osteogenetic ability. However, the intrinsic brittleness of Mg-Zn-Ca BMG has to be significantly improved for commercial application. Therefore, the concept of ex-situ adding metallic particles is introduced to produce Mg-Zn-Ca bulk metal glass composite (BMGC) to meet the requirement of mechanical properties. In this study, the Mg66Zn29Ca5 BMG was selected as base alloy and added different micro-spherical metal particles (Fe, porous Mo and TiZr-based metallic glass powder) to enhance its fracture toughness. The optima results occur at 3 mm Mg-Zn-Ca BMGC rods with 20vol.% porous Mo particles, the fracture toughness increased up to 6.1 MPa‧m1/2 from 1.1 MPa‧m1/2 of based and remained the compressive strength of 672 MPa. However, 4mm size rods were unstable structures combined with amorphous and crystalline structures due to the insufficient cooling rate. Therefore, we design a core-shell structure comprising a pure Mg crystalline core and amorphous shell in order to overcome the size limit imposed by the cooling rate effects. As a result, the shell of 4mm core-shell Mg BMG rods exhibits fully amorphous shell and have a lower degradation rate after six weeks of degradation. Moreover, the biocompatibility and osteogenic effects were similar between the core–shell and solid structures of Mg-based BMG. In conclusion, the core–shell structure of Mg-based BMG exhibits suitable mechanical properties and lower degradation rate while still enhancing osteogenic potential in vitro.
As an orthopedic implant, initial cell adhesion was a critical issue for subsequent osteogenesis and bone formation because the first contact between cells and the implant occurs upon the implants surface. Three different surface roughness of Mg-based BMG samples were designed to understand the degradation behavior of Mg-based BMG and the adhesion ability and osteogenetic ability of the contact cells. The surface roughness could not affect the degradation behavior of Mg66Zn29Ca5 BMG. The surface polished via #800 grade sandpaper possessed well-attached surface and a good cell viability environment for MG63 osteoblast-like cells. Moreover, higher surface roughness was investigated more calcium and mineral deposition which verify the relationship between surface roughness and cell performance.
The Mg-Zn-Ca metallic glass thin film (MGTF) was coated on the surface of ZK60 substrate improve its mechanical properties, corrosion resistance and biocompatibility. Through the DC vacuum sputtering machine, the Mg-based metallic glass coating was successfully coated on the ZK60 substrate, and the structure of the Mg-based metallic glass coating remained amorphous. The results of coating adhesion test show that the Mg-based metallic glass coating possess high adhesion property with 5B grade of tape testing (0% of the film peels off from the substrate). Meanwhile, the hardness of the Mg-based metallic glass coating can reach to 240 Hv by nano-indentation. Through the three-point bending testing, the Mg-based metallic glass thin film MGTF coating with 1000 nm thickness can effectively improve the bending strength about from 216 MPa to 254 MPa. In addition, the results of electrochemical corrosion test present that the Mg-based metallic glass MGTF coating prepared by 30W sputtering possessed the best corrosion resistance. The corrosion current in 30W power was 1.66 × 10-6 A/cm2, which is much lower than the ZK60 alloy (2.88 × 10-5 A/cm2).
關鍵字(中) ★ 金屬玻璃
★ 複合材料
★ 核殼結構
★ 生物降解
★ 表面粗糙度
★ 薄膜
關鍵字(英) ★ Metallic glass
★ composite material
★ core-shell structure
★ biodegradable
★ surface roughness
★ thin film
論文目次 鎂鋅鈣金屬玻璃及其複材應用於生醫植入物之研究 I
摘要 I
Abstract III
Acknowledgments VI
Table of contents VII
List of tables XII
List of figure XV
Chapter 1 Introduction 1
Chapter2 Literature review 4
2-1 Introduction metallic glass 4
2-1-1 Mechanical properties 5
2-1-2 Corrosion resistance and antibacterial properties 5
2-1-3 Others properties 6
2.2 The development of metallic glass 6
2.3 Component rule 8
2.4 Glass-forming ability index 9
2.4.1 Characteristic temperatures 10
2.4.2 Supercooled liquid region, ∆Tx=Tx -Tg 10
2.4.3 γ parameter 10
2.4.4 γm parameter 11
2.4.5 Reduce glass transformation temperature 12
2.5 Strengthening mechanism of BMGC 12
2-5-1 Ex-situ method 13
2-5-2 In-situ method 14
2-6 Relationship between the surface roughness and bio-implant 14
Chapter 3 Experimental procedures 17
3-1 Samples preparation and composition identification 18
3-2 Microstructure analysis 18
3-3 Thermal properties analysis 18
3-4 Mechanical property 19
3-4-1 Hardness tests 19
3-4-2 Fracture toughness tests 19
3-4-3 Compression tests 20
3-4-4 Nanoindentation tests 20
3-4-5 Three point bending tests 21
3-5 Corrosion tests 21
3-6 Surface roughness 22
3-7 Investigation of degradation behavior 22
3-8 Cell viability tests 23
3-9 Detection of extracellular matrix calcium deposition 24
3-10 Migration tests 24
3-11 Protein expression 25
3-12 Statistical analysis 25
Chapter4 Results and discussion 27
4-1 The properties of Mg66 and BMGCs with ex-situ adding different particles 27
4-1-1 Microstructure and morphology of Mg66 BMG and BMGCs 27
4-1-2 The thermal characteristic of Mg66 BMG and BMGCs 28
4-1-3 The mechanical properties of Mg66 BMG and BMGCs 29
4-1-4 The morphology of fracture surface 30
4-2 The properties of core-shell structure BMG and BMGC 31
4-2-1The Surface morphology and chemical composition of core-shell structure BMG and BMGC 31
4-2-2 Microstructure of cores-shell structure BMG and BMGCs 32
4-2-3 The thermal characteristic of core-shell structure BMG and BMGCs 33
4-2-4 Mechanical properties of core-shell structure BMG and BMGCs 33
4-2-5 Compression test 34
4-2-6 Degradation behavior 35
4-2-7 Cell viability 36
4-2-8 Calcium deposition 37
4-2-9 Migration capacity 37
4-3 Relationship between the surface roughness of Mg66 BMG and osteogenic ability 38
4-3-1 Degradation behavior 38
4-3-2 Microstructure characterization 39
4-3-3 Observation of surface morphologies 39
4-3-4 Cell adhesion and spreading 40
4-3-5 Cell viability 40
4-3-6 Extracellular-matrix calcium deposition 41
4-3-7 Migration capacity 41
4-4 ZK60 by coating Mg-based Metallic Glass Thin Film 42
4-4-1 Microstructure and morphology of Mg-based MGTF 42
4-4-2 The adhesive force between film and substrate 43
4-4-3 The mechanical properties of Mg-based MGTF 43
4-4-4 The corrosion behavior of Mg-based MGTF 44
4-4-5 The degradation behavior of Mg-based MGTF with different thickness 44
Chapter 5 Conclusion 46
References 48
參考文獻 [1]. M. Evans, M. Spencer, Q. Wang, S. H. White, J. L. Cunningham, “Design and testing of external fixator bone screws.”, J Biomed Eng, Vol.12, pp.457-462.
[2]. P. W. Skinner, D. Powles, “Compression screw fixation for displaced subcapital fracture of the femur. Success or failure?”, Bone Joint J, Vol.68-B, 1986, pp.78-82.
[3]. C. Liu, Z. Ren, Y. Xu, S. Pang, X. Zhao, Y. Zhao, “Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review.”, Scanning 2018, 2018, pp.9216314.
[4]. E. A. Lewallen, S. M. Riester, C. A. Bonin, H. M. Kremers, A. Dudakovic, S. Kakar, R. C. Cohen, J. J. Westendorf, D. G. Lewallen, “Biological strategies for improved osseointegration and osteoinduction of porous metal orthopedic implants.”, Tissue Eng Part B Rev, Vol.21, 2015, pp.218-30.
[5]. C. C. Wong, P. C. Wong, P. H. Tsai, J. S. C. Jang, C. K. Cheng, H. H. Chen, C. H. Chen, “Biocompatibility and Osteogenic Capacity of Mg-Zn-Ca Bulk Metallic Glass for Rabbit Tendon-Bone Interference Fixation.”, International Journal of Molecular Sciences , Vol.9, 2019, pp.20.
[6]. S. Galli, M. Stocchero, M. Andersson, J. Karlsson, W. He, T. Lilin, A. Wennerberg, R. Jimbo, “The effect of magnesium on early osseointegration in osteoporotic bone: a histological and gene expression investigation.” Osteoporos Int, Vol.28, 2017, pp.2195-2205.
[7]. X. Li, P. Gao, P. Wan, Y. Pei, L. Shi, B. Fan, C. Shen, X. Xiao, K. Yang, Z. Guo, “Novel Bio-functional Magnesium Coating on Porous Ti6Al4V Orthopaedic Implants: In vitro and In vivo Study.”, Sci Rep, Vol.7, 2017, pp. 40755.
[8]. M. Jafary-Zadeh, G. Praveen Kumar, P. S. Branicio, M. Seifi, J. J. Lewandowski, F. Cui, “A Critical Review on Metallic Glasses as Structural Materials for Cardiovascular Stent Applications.”, J Funct Biomate, Vol.9, 2018, pp.19.
[9]. G. Kumar, A. Desai, J. Schroers, “Bulk Metallic Glass: The Smaller the Better.”, Advanced Materials,Vol.23, 2011, pp.461-476.
[10]. D. W. Oxtoby, “Homogeneous nucleation: theory and experiment.”, J. Phys.: Condens. Matter,Vol.4,1992, pp.7627.
[11]. A. Mahata, M.A. Zaeem, M.I. Baskes, “Understanding homogeneous nucleation in solidification of aluminum by molecular dynamics simulations.”, Modelling and Simulation in Materials Science and Engineering, Vol.26, 2018, pp.25007.
[12]. W. Fu, Y. Sun, W. Zhang, “The Effect of Cooling Rate on Microstructure and Mechanical Properties of Zr-Based Bulk Metallic Glasses.”, Advances in Materials Science and Engineering, Vol.2013, 2013, pp.1-6.
[13]. A. King, G. Johnson, D. Engelberg, W. Ludwig, J.M arrow, “Observations of Intergranular Stress Corrosion Cracking in a Grain-Mapped Polycrystal.”, Science , Vol.321, 2008, pp.382-385.
[14]. A.C. Lund, A. Christopher, “Topological and chemical arrangement of binary alloys during severe deformation.”, Journal of Applied Physics , Vol.95, 2004, pp.4815-4822.
[15]. 吳學陞,新興材料-塊狀金屬玻璃金屬材料,工業材料,第149期,1999年。
[16]. A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Materialia, Vol.48, 2000, pp.279-306.
[17]. A. Inoue, “Bulk amorphous alloys practical characteristics and applications, institute for material research”, Tohoku University, Sendai, Japan, 1999.
[18]. 顧宜,複合材料,新文京開發出版公司,1992年。
[19]. C. W. Chu, J. S. C. Jang, S. M. Chiu and J. P. Chu, “Study of the characteristics and corrosion behavior for the Zr-based metallic glass thin film fabricated by pulse magnetron sputtering process”, Thin Solid Films, Vol.517, 2009, pp.4930-4933.
[20]. W. Klement, R. Willens and P. Duwez, “Non-crystalline structure in solidified Gold-Silicon alloys”, Nature, Vol.187, 1960, pp.869-870.
[21]. A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, “Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method”, Materials Transactions, Vol. 32, 1991, pp. 609-616.
[22]. A. Inoue, B. Shen, H. Koshiba, H. Kato and A. R. Yavari, “Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties”, Nature materials, Vol. 2, 2003, pp. 661-663.
[23]. H. Ma, L. L. Shi, J. Xu, Y. Li and E. Ma, “Discovering inch-diameter metallic glasses in three-dimensional composition space”, Applied Physics Letters, Vol. 87, 2005, pp. 181915.
[24]. D. G. Pan, H. F. Zhang, A. M. Wang and Z. Q. Hu, “Enhanced plasticity in Mg-based bulk metallic glass composite reinforced with ductile Nb particles”, Applied Physics Letters, Vol. 89, 2006, pp. 261904.
[25]. B. Zberg, Peter J. Uggowitzer and Jorg F. Loffler, “MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants”, Nature materials, Vol. 8, 2009, pp. 887-891.
[26]. J. S. C. Jang and J. Y. Ciou, “Enhanced mechanical performance of Mg metallic glass with porous Mo particles”, Applied Physics Letters, Vol. 92, 2008, pp. 11930.
[27]. P. C. Wong, “Mechanical properties of magnesium based bulk meallic glass composites with the Ti particles”, National Central University Master′s thesis, 2012.
[28]. J. Wang, S. Huang and Y. W, “Enhanced mechanical properties and corrosion resistance of a Mg–Zn–Ca bulk metallic glass composite by Fe particle addition”, Materials Letters, Vol. 91, 2013, pp. 311-314.
[29]. P. C. Wong, P. H Tsai, T. H. Li, C. K. Cheng, J. S. C. Jang, and J. C. Huang, “Degradation behavior and mechanical strength of Mg-Zn-Ca bulk metallic glass composites with Ti particles as biodegradable materials”, Journal of Alloys and Compounds, Vol. 699, 2017, pp. 914-920
[30]. A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates”, Materials Transactions, Vol. 36, 1995, pp. 866.
[31]. A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties”, Materials Science and Engineering A, Vol.357, 1997, pp. 226–228.
[32]. A. Inoue, T. Zhang, A. Takeuchi, “Ferrous and nonferrous bulk amorphous alloys", Materials Science Forum, Vol. 885, 1998, pp. 269-272.
[33]. A. Inoue, “Bulk Amorphous Alloys”. Trans Tech Publications, Zurich, 1998.
[34]. A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Materialia, Vol. 48, 2000, pp. 279.
[35]. Z. P. Lu, C. T. Liu, “A new glass-forming ability criterion for bulk metallic glasses”, Acta Materialia, Vol. 50, 2002, pp. 3501.
[36]. X. H. Du, J. C. Huang, C. T. Liu, Z. P. Lu, “New criterion of glass forming ability for bulk metallic glasses”, Journal of Applied Physics, Vol. 101, 2007, pp. 086108.
[37]. D. Turnbull, “Under what conditions can a glass be formed?”, Contemporary Physics, Vol. 10, 1969, pp. 473.
[38]. P. G. Debenedetti1, F.H. Stillinger, “Supercooled liquids and the glass transition”, Nature, Vol. 410, 2001, pp. 259.
[39]. Z. P. Lu, C. T. Liu, “Glass formation criterion for various glass-forming systems”, Physical Review Journals, Vol. 91, 2003, pp.115505.
[40]. Z. Zhang, F. Wu, G. He and J. Eckert, “Mechanical properties, damage and fracture mechanisms of bulk metallic glass materials”, Journal of Materials Science and Technology, Vol. 23, 2007, pp. 747-767.
[41]. D. G. Pan, H. F. Zhang, A. M. Wang and Z. Q. Hu, “Enhanced plasticity in Mg-based bulk metallic glass composite reinforced with ductile Nb particles”, Applied Physics Letters, Vol. 89, 2006, pp. 261904.
[42]. K. B. Anselme, “On the relation between surface roughness of metallic substrates and adhesion of human primary bone cells”, Scanning,Vol. 36,2014, pp. 11-20.
[43]. Y. Zhang, S. E. Chen, J. Shao, “Combinatorial Surface Roughness Effects on Osteoclastogenesis and Osteogenesis” ACS Appl Mater Interfaces,Vol.10, 2018, pp. 36652-36663
[44]. Y. Wu, J. P. Zitelli, K. S. TenHuisen, X. Yu, “Differential response of Staphylococci and osteoblasts to varying titanium surface roughness” Biomaterials, Vol. 32, 2011, pp. 951-960.
[45]. L. E. Damiati, M. G. Nobbs, A. H. Su, “Impact of surface topography and coating on osteogenesis and bacterial attachment on titanium implants”, Journal of Tissue and Engineering, Vol. 9, 2018, pp.91-16.
[46]. G. B. Schneider, “Implant Surface Roughness Affects Osteoblast Gene Expression”, J Dent Res, Vol. 82, 2003, pp. 372-376.
[47]. S. P. Puckett, R. Webster, “Nano rough micron patterned titanium for directing osteoblast morphology and adhesion”, Int J Nanomedicine, Vol. 3, 2008, pp. 229-241.
[48]. D. Kubies, T. Riedel, E. Chánová, K. Balík, M. Douděrová, J. Bártová, V. Pešáková, “The interaction of osteoblasts with bone-implant materials: 1. The effect of physicochemical surface properties of implant materials”, Physiol Res,Vol. 60, 2011, pp. 95-111.
[49]. L. Marinucci, “Effect of titanium surface roughness on human osteoblast proliferation and gene expression in vitro”, Int J Oral Maxillofac Implants,Vol. 21, 2006, pp.719-725.
[50]. D. Yamashita,“Effect of surface roughness on initial responses of osteoblast-like cells on two types of zirconia”, Dent Mater J ,Vol. 28, 2009, pp. 461-470.
[51]. A. King, G. Johnson, D. Engelberg, W. Ludwig, J. Marrow, “Observations of Intergranular Stress Corrosion Cracking in a Grain-Mapped Polycrystal”, Science,Vol. 321, 2008, pp. 382-385.
[52]. P. C. Wong, “Degradation behavior and mechanical strength of Mg-Zn-Ca bulk metallic glass composites with Ti particles as biodegradable materials”, Journal of Alloys and Compounds,Vol. 699, 2017, pp. 914-920.
[53]. R. E. Melchers, R. Jefferey, “Surface Roughness Effect on Marine Immersion Corrosion of Mild Steel”, Corrosion, Vol. 60, 2004, pp.697-703.
[54]. R. B. Alvarez, H. J. Martin, M. F. Horstemeyer, “Corrosion relationships as a function of time and surface roughness on a structural AE44 magnesium alloy”, Corrosion Science, Vol. 52, 2010, pp. 1635-1648,.
[55].R. Walter, M. Kannan, B. Y. He, A. Sandham, “ Effect of surface roughness on the in vitro degradation behaviour of a biodegradable magnesium-based alloy”, Applied Surface Science , Vol. 279, 2013, pp. 343-348.
[56]. T. L. Nguyen, A. Blanquet, M. P. Staiger, G. J. Dias, T. B. Woodfield, “On the role of surface roughness in the corrosion of pure magnesium in vitro”, J Biomed Mater Res B Appl Biomater, Vol. 100, 2012, pp. 1310-1318
[57]. K. M. Mussert, W. P. Vellinga, A. Bakker, “A nano-indentation study on the mechanical behaviour of the matrix material in an AA6061-Al2O3 MMC”, Journal of material science, Vol. 37, 2002, pp.789-794
指導教授 鄭憲清(Shian-Ching Jang) 審核日期 2022-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明