博碩士論文 108226036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:85 、訪客IP:3.129.39.83
姓名 邱國賢(Guo-Sian Ciou)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 超強耦合之有機高分子電激發偏極子元件
(Ultra-strongly coupled organic polymer polariton device)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 微米光柵壓印有機太陽能電池主動層之研究
★ 有機波導結構的ASE現象研究以及共振腔結構的模擬★ 利用金屬微共振腔研究光與有機激發態強耦合現象
★ 多層式雙極有機場效電晶體之研究★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究
★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究★ 有機染料分子薄膜之光電特性研究
★ 多層結構有機電晶體之研究★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象
★ 有機強耦合共振腔元件設計與發光量測系統架設之研究★ 強耦合有機微共振腔之設計與研究
★ 光激發有機極化子元件之製作與量測★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-23以後開放)
摘要(中) 本論文主旨為利用Poly[2-methoxy-5-(3,7-dimethyoctyoxyl)-1,4-phenylenevi- nylene](MDMO-PPV)製作超強耦合有機發光二極體(organic light-emitting diode, OLED)並研究其物理現象。理論上,當光子與材料激發態(激子)在共振腔中進行強耦合作用,則產生偏極子(polariton)混成態和不同的能量色散分支,而拉比分裂為色散曲線上下支的最小能量差,當拉比分裂超過激子能量的20%以上則為超強耦合狀態。
在元件製作上,我們利用ZnO和polyethylenimine (PEI)的奈米複合層作為電子傳輸層,並優化PEI之摻雜比例以提升元件的外部量子效率。相較於未摻雜的OLED,優化PEI比例的元件外部量子效率可提高約70倍。我們進一步利用角度解析光譜技術和Hopfield Hamiltonian色散模型,研究超強耦合OLED發光和耦合強度,並探討改變出光側銀膜反射鏡厚度的影響。當銀膜厚度由20 nm增加至50 nm,元件發光亮度和效率降低但耦合強度隨之增加,而銀膜厚度最少需30 nm以上才能有效將出光限制在下支偏極子模態,呈現弱角度相關之能量色散且半高寬極窄的發光。而後我們調整不同MDMO-PPV與ZnO:PEI厚度優化元件效率,發現當兩者厚度相近比例為1:1時可獲得最高效率。
最終,在出光側銀膜厚度為30 nm和ZnO:PEI及MDMO-PPV厚度比例為1:1的條件下,我們得到最佳化之超強耦合電激發偏極子元件,其外部量子效率0.24%,最高亮度達到600 cd/m^2,且拉比分裂為860 meV,耦合強度為激子能量的33.2%。
摘要(英) This thesis exploited Poly[2-methoxy-5-(3,7-dimethyoctyoxyl)-1,4- phenylenevinylene] (MDMO-PPV) as the emissive layer of ultra-strongly coupled organic light-emitting diode (OLED) and studied the physical phenomenon. In theory, strong coupling of exciton and photon in the cavity would form hybrid polariton states and different energy dispersions of upper (UPB) and lower (LPB) polariton branches. The minimum energy difference between two branches is called Rabi-splitting energy. When Rabi-splitting energy exceeds about 20% of exciton energy, the regime of ultra-strong coupling is reached.
In the device fabrication, we used ZnO and polyethyleneimine (PEI) nanocomposite layer as the electron injection layer, and optimized the PEI blend ratio to improve the external Quantum Efficiency (EQE) of OLEDs. Compared to the OLED without PEI, the optimized device shows 70 times higher EQE. We further employed the angle-resolved spectroscopy and Hopfield Hamiltonian dispersion model to study the emission and coupling strength of ultra-strongly coupled OLEDs, and investigated the effect of varying the thickness of silver mirror as the emission side. When the silver thickness is increased from 20 nm to 50 nm, the luminance and EQE are decreased but the coupling strength is increased. The silver thickness must exceed 30 nm to confine the emission in the LPB mode, revealing weakly angle-dependent dispersion and narrow emission. Later, we modified the thicknesses of MDMO-PPV layer and ZnO:PEI nanocomposite layer to optimize EQE, and obtained the highest EQE when the two layers with similar thicknesses.
Finally, when using the silver thickness of 30 nm and the 1:1 thickness ratio of MDMO-PPV and ZnO:PEI, we obtained the optimal polariton OLED with an EQE up to 0.24%, luminance of 600 cd/m^2, and the Rabi splitting of 860 meV, corresponding to 33.2% of exciton energy and demonstrating the operation of ultra-strong coupling.
關鍵字(中) ★ 偏極子
★ 發光二極體
★ 超強耦合
關鍵字(英) ★ polariton
★ Organic light emitting diode
★ MDMO-PPV
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 ix
第一章、緒論 1
1-1高分子發光二極體 1
1-2名詞解釋 1
1-2-1激子 1
1-2-2偏極子 2
1-3有機偏極子元件 2
1-4共振激發 4
1-5研究動機 6
第二章、基本原理 7
2-1有機發光二極體理論 7
2-1-1有機發光二極體架構 7
2-1-2載子注入及傳輸機制 8
2-1-3外部量子效率 10
2-2薄膜光學理論 10
2-2-1單層膜之反射與透射 10
2-2-2多層膜之反射與透射 12
2-2-3電場分布 13
2-3耦合理論 13
2-3-1微共振腔的光子模態 13
2-3-2光子與激子的耦合 15
第三章、實驗方法 20
3-1 實驗材料 20
3-2製程儀器 21
3-2-1原子層沉積(Atomic Layer Deposition) 21
3-2-2熱蒸鍍系統(Thermal Evaporation Coater) 22
3-2-3旋轉塗佈機(Spin Coater) 23
3-2-4手套箱(Glove Box) 23
3-3量測設備 24
3-3-1半導體參數分析儀(SPA)及Photodiode 24
3-3-2光纖量測系統 25
3-3-3即時多角度光譜量測系統 26
3-3-4紫外/可見/紅外光光譜儀 28
3-3-5積分球量測系統 29
3-4實驗步驟 30
3-4-1電子注入層(HIL)配置 30
3-4-2高分子發光二極體製程步驟 31
3-4-3超強耦合發光二極體製程步驟 31
第四章、實驗結果與討論 32
4-1MDMO-PPV介紹 32
4-2發光二極體注入 33
4-3光學薄膜設計 36
4-4耦合元件結果討論 38
4-4-1強弱耦合元件比較 38
4-4-2下反射鏡厚度比較 39
4-4-3元件優化 44
第五章、結論與未來展望 47
參考文獻 48
參考文獻 [1] J. H. Burroughes et al., "Light-emitting diodes based on conjugated polymers," nature, vol. 347, no. 6293, pp. 539-541, 1990.
[2] D. Baigent, R. Marks, N. Greenham, R. Friend, S. Moratti, and A. Holmes, "Conjugated polymer light‐emitting diodes on silicon substrates," Applied physics letters, vol. 65, no. 21, pp. 2636-2638, 1994.
[3] T. Chiba, Y.-J. Pu, and J. Kido, "Solution-processable electron injection materials for organic light-emitting devices," Journal of Materials Chemistry C, vol. 3, no. 44, pp. 11567-11576, 2015.
[4] M. Sessolo and H. J. Bolink, "Hybrid organic–inorganic light‐emitting diodes," Advanced Materials, vol. 23, no. 16, pp. 1829-1845, 2011.
[5] N. Tokmoldin, N. Griffiths, D. D. Bradley, and S. A. Haque, "A Hybrid Inorganic–Organic Semiconductor Light‐Emitting Diode Using ZrO2 as an Electron‐Injection Layer," Advanced Materials, vol. 21, no. 34, pp. 3475-3478, 2009.
[6] J. Meyer, S. Hamwi, M. Kröger, W. Kowalsky, T. Riedl, and A. Kahn, "Transition metal oxides for organic electronics: energetics, device physics and applications," Advanced materials, vol. 24, no. 40, pp. 5408-5427, 2012.
[7] M. Fox, "Optical properties of solids," ed: American Association of Physics Teachers, 2002.
[8] H. Deng, H. Haug, and Y. Yamamoto, "Exciton-polariton bose-einstein condensation," Reviews of modern physics, vol. 82, no. 2, p. 1489, 2010.
[9] W. Du, S. Zhang, Q. Zhang, and X. Liu, "Recent progress of strong exciton–photon coupling in lead halide perovskites," Advanced Materials, vol. 31, no. 45, p. 1804894, 2019.
[10] P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, "Solid state electrically injected exciton-polariton laser," Physical review letters, vol. 110, no. 20, p. 206403, 2013.
[11] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Physical Review Letters, vol. 69, no. 23, p. 3314, 1992.
[12] D. G. Lidzey, D. Bradley, M. Skolnick, T. Virgili, S. Walker, and D. Whittaker, "Strong exciton–photon coupling in an organic semiconductor microcavity," Nature, vol. 395, no. 6697, pp. 53-55, 1998.
[13] S. Kéna-Cohen and S. Forrest, "Room-temperature polariton lasing in an organic single-crystal microcavity," Nature Photonics, vol. 4, no. 6, pp. 371-375, 2010.
[14] J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, "Strong coupling in a microcavity LED," Physical review letters, vol. 95, no. 3, p. 036401, 2005.
[15] A. Genco, A. Ridolfo, S. Savasta, S. Patanè, G. Gigli, and M. Mazzeo, "Bright Polariton Coumarin‐Based OLEDs Operating in the Ultrastrong Coupling Regime," Advanced Optical Materials, vol. 6, no. 17, p. 1800364, 2018.
[16] M. S. Bradley and V. Bulović, "Intracavity optical pumping of J-aggregate microcavity exciton polaritons," Physical Review B, vol. 82, no. 3, p. 033305, 2010.
[17] G. M. Akselrod, E. R. Young, M. S. Bradley, and V. Bulović, "Lasing through a strongly-coupled mode by intra-cavity pumping," Optics express, vol. 21, no. 10, pp. 12122-12128, 2013.
[18] P. Michetti and G. La Rocca, "Polariton-polariton scattering in organic microcavities at high excitation densities," Physical Review B, vol. 82, no. 11, p. 115327, 2010.
[19] D. M. Coles, R. T. Grant, D. G. Lidzey, C. Clark, and P. G. Lagoudakis, "Imaging the polariton relaxation bottleneck in strongly coupled organic semiconductor microcavities," Physical Review B, vol. 88, no. 12, p. 121303, 2013.
[20] J.-F. Chang et al., "Development of a highly efficient, strongly coupled organic light-emitting diode based on intracavity pumping architecture," Optics Express, vol. 28, no. 26, pp. 39781-39789, 2020.
[21] J. D. Plumhof, T. Stöferle, L. Mai, U. Scherf, and R. F. Mahrt, "Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer," Nature materials, vol. 13, no. 3, pp. 247-252, 2014.
[22] M. Wei et al., "Low-threshold polariton lasing in a highly disordered conjugated polymer," Optica, vol. 6, no. 9, pp. 1124-1129, 2019.
[23] T. Matsushima, Y. Kinoshita, and H. Murata, "Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers," Applied Physics Letters, vol. 91, no. 25, p. 253504, 2007.
[24] L. Hung, C. W. Tang, and M. G. Mason, "Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode," Applied Physics Letters, vol. 70, no. 2, pp. 152-154, 1997.
[25] H. Lee et al., "The origin of the hole injection improvements at indium tin oxide/molybdenum trioxide/N, N′-bis (1-naphthyl)-N, N′-diphenyl-1, 1′-biphenyl-4, 4′-diamine interfaces," Applied Physics Letters, vol. 93, no. 4, p. 279, 2008.
[26] J. Simmons, "Richardson-Schottky effect in solids," Physical Review Letters, vol. 15, no. 25, p. 967, 1965.
[27] P. Vacca et al., "The Relation between the Electrical, Chemical, and Morphological Properties of Indium− Tin Oxide Layers and Double-Layer Light-Emitting Diode Performance," The Journal of Physical Chemistry C, vol. 111, no. 46, pp. 17404-17408, 2007.
[28] R. H. Fowler and L. Nordheim, "Electron emission in intense electric fields," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 119, no. 781, pp. 173-181, 1928.
[29] A. J. Heeger, I. Parker, and Y. Yang, "Carrier injection into semiconducting polymers: Fowler-Nordheim field-emission tunneling," Synthetic Metals, vol. 67, no. 1-3, pp. 23-29, 1994.
[30] D. Yokoyama, M. Moriwake, and C. Adachi, "Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films," Journal of Applied Physics, vol. 103, no. 12, p. 123104, 2008.
[31] 李正中, "薄膜光學與鍍膜技術," ed: 第四版, 藝軒圖書出版社, 2004.
[32] S. Hayashi, Y. Ishigaki, and M. Fujii, "Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities," Physical Review B, vol. 86, no. 4, p. 045408, 2012.
[33] S. Kéna‐Cohen, S. A. Maier, and D. D. Bradley, "Ultrastrongly Coupled Exciton–Polaritons in Metal‐Clad Organic Semiconductor Microcavities," Advanced Optical Materials, vol. 1, no. 11, pp. 827-833, 2013.
[34] M. Fox, Quantum optics: an introduction. OUP Oxford, 2006.
[35] C. Ciuti, G. Bastard, and I. Carusotto, "Quantum vacuum properties of the intersubband cavity polariton field," Physical Review B, vol. 72, no. 11, p. 115303, 2005.
[36] N. M. Peraca, A. Baydin, W. Gao, M. Bamba, and J. Kono, "Ultrastrong light–matter coupling in semiconductors," Semiconductor Quantum Science and Technology, vol. 105, pp. 89-151, 2020.
[37] E. Eizner, J. Brodeur, F. Barachati, A. Sridharan, and S. Kéna-Cohen, "Organic photodiodes with an extended responsivity using ultrastrong light–matter coupling," ACS Photonics, vol. 5, no. 7, pp. 2921-2927, 2018.
[38] D. Comoretto, Organic and hybrid photonic crystals. Springer, 2015.
[39] M. M. Mandoc, W. Veurman, L. J. A. Koster, B. de Boer, and P. W. Blom, "Origin of the reduced fill factor and photocurrent in MDMO‐PPV: PCNEPV all‐polymer solar cells," Advanced Functional Materials, vol. 17, no. 13, pp. 2167-2173, 2007.
[40] 林煒紘, "超強耦合高分子發光二極體之研究," 碩士論文, 國立中央大學, 民國一零八年.
[41] B. Gündüz, "Optical properties of poly [2-methoxy-5-(3′, 7′-dimethyloctyloxy)-1, 4-phenylenevinylene] light-emitting polymer solutions: effects of molarities and solvents," Polymer Bulletin, vol. 72, no. 12, pp. 3241-3267, 2015.
[42] R. Kaçar, S. P. Mucur, F. Yıldız, S. Dabak, and E. Tekin, "Highly efficient inverted organic light emitting diodes by inserting a zinc oxide/polyethyleneimine (ZnO: PEI) nano-composite interfacial layer," Nanotechnology, vol. 28, no. 24, p. 245204, 2017.
指導教授 張瑞芬 審核日期 2022-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明