參考文獻 |
[1] J. H. Burroughes et al., "Light-emitting diodes based on conjugated polymers," nature, vol. 347, no. 6293, pp. 539-541, 1990.
[2] D. Baigent, R. Marks, N. Greenham, R. Friend, S. Moratti, and A. Holmes, "Conjugated polymer light‐emitting diodes on silicon substrates," Applied physics letters, vol. 65, no. 21, pp. 2636-2638, 1994.
[3] T. Chiba, Y.-J. Pu, and J. Kido, "Solution-processable electron injection materials for organic light-emitting devices," Journal of Materials Chemistry C, vol. 3, no. 44, pp. 11567-11576, 2015.
[4] M. Sessolo and H. J. Bolink, "Hybrid organic–inorganic light‐emitting diodes," Advanced Materials, vol. 23, no. 16, pp. 1829-1845, 2011.
[5] N. Tokmoldin, N. Griffiths, D. D. Bradley, and S. A. Haque, "A Hybrid Inorganic–Organic Semiconductor Light‐Emitting Diode Using ZrO2 as an Electron‐Injection Layer," Advanced Materials, vol. 21, no. 34, pp. 3475-3478, 2009.
[6] J. Meyer, S. Hamwi, M. Kröger, W. Kowalsky, T. Riedl, and A. Kahn, "Transition metal oxides for organic electronics: energetics, device physics and applications," Advanced materials, vol. 24, no. 40, pp. 5408-5427, 2012.
[7] M. Fox, "Optical properties of solids," ed: American Association of Physics Teachers, 2002.
[8] H. Deng, H. Haug, and Y. Yamamoto, "Exciton-polariton bose-einstein condensation," Reviews of modern physics, vol. 82, no. 2, p. 1489, 2010.
[9] W. Du, S. Zhang, Q. Zhang, and X. Liu, "Recent progress of strong exciton–photon coupling in lead halide perovskites," Advanced Materials, vol. 31, no. 45, p. 1804894, 2019.
[10] P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, "Solid state electrically injected exciton-polariton laser," Physical review letters, vol. 110, no. 20, p. 206403, 2013.
[11] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Physical Review Letters, vol. 69, no. 23, p. 3314, 1992.
[12] D. G. Lidzey, D. Bradley, M. Skolnick, T. Virgili, S. Walker, and D. Whittaker, "Strong exciton–photon coupling in an organic semiconductor microcavity," Nature, vol. 395, no. 6697, pp. 53-55, 1998.
[13] S. Kéna-Cohen and S. Forrest, "Room-temperature polariton lasing in an organic single-crystal microcavity," Nature Photonics, vol. 4, no. 6, pp. 371-375, 2010.
[14] J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, "Strong coupling in a microcavity LED," Physical review letters, vol. 95, no. 3, p. 036401, 2005.
[15] A. Genco, A. Ridolfo, S. Savasta, S. Patanè, G. Gigli, and M. Mazzeo, "Bright Polariton Coumarin‐Based OLEDs Operating in the Ultrastrong Coupling Regime," Advanced Optical Materials, vol. 6, no. 17, p. 1800364, 2018.
[16] M. S. Bradley and V. Bulović, "Intracavity optical pumping of J-aggregate microcavity exciton polaritons," Physical Review B, vol. 82, no. 3, p. 033305, 2010.
[17] G. M. Akselrod, E. R. Young, M. S. Bradley, and V. Bulović, "Lasing through a strongly-coupled mode by intra-cavity pumping," Optics express, vol. 21, no. 10, pp. 12122-12128, 2013.
[18] P. Michetti and G. La Rocca, "Polariton-polariton scattering in organic microcavities at high excitation densities," Physical Review B, vol. 82, no. 11, p. 115327, 2010.
[19] D. M. Coles, R. T. Grant, D. G. Lidzey, C. Clark, and P. G. Lagoudakis, "Imaging the polariton relaxation bottleneck in strongly coupled organic semiconductor microcavities," Physical Review B, vol. 88, no. 12, p. 121303, 2013.
[20] J.-F. Chang et al., "Development of a highly efficient, strongly coupled organic light-emitting diode based on intracavity pumping architecture," Optics Express, vol. 28, no. 26, pp. 39781-39789, 2020.
[21] J. D. Plumhof, T. Stöferle, L. Mai, U. Scherf, and R. F. Mahrt, "Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer," Nature materials, vol. 13, no. 3, pp. 247-252, 2014.
[22] M. Wei et al., "Low-threshold polariton lasing in a highly disordered conjugated polymer," Optica, vol. 6, no. 9, pp. 1124-1129, 2019.
[23] T. Matsushima, Y. Kinoshita, and H. Murata, "Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers," Applied Physics Letters, vol. 91, no. 25, p. 253504, 2007.
[24] L. Hung, C. W. Tang, and M. G. Mason, "Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode," Applied Physics Letters, vol. 70, no. 2, pp. 152-154, 1997.
[25] H. Lee et al., "The origin of the hole injection improvements at indium tin oxide/molybdenum trioxide/N, N′-bis (1-naphthyl)-N, N′-diphenyl-1, 1′-biphenyl-4, 4′-diamine interfaces," Applied Physics Letters, vol. 93, no. 4, p. 279, 2008.
[26] J. Simmons, "Richardson-Schottky effect in solids," Physical Review Letters, vol. 15, no. 25, p. 967, 1965.
[27] P. Vacca et al., "The Relation between the Electrical, Chemical, and Morphological Properties of Indium− Tin Oxide Layers and Double-Layer Light-Emitting Diode Performance," The Journal of Physical Chemistry C, vol. 111, no. 46, pp. 17404-17408, 2007.
[28] R. H. Fowler and L. Nordheim, "Electron emission in intense electric fields," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 119, no. 781, pp. 173-181, 1928.
[29] A. J. Heeger, I. Parker, and Y. Yang, "Carrier injection into semiconducting polymers: Fowler-Nordheim field-emission tunneling," Synthetic Metals, vol. 67, no. 1-3, pp. 23-29, 1994.
[30] D. Yokoyama, M. Moriwake, and C. Adachi, "Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films," Journal of Applied Physics, vol. 103, no. 12, p. 123104, 2008.
[31] 李正中, "薄膜光學與鍍膜技術," ed: 第四版, 藝軒圖書出版社, 2004.
[32] S. Hayashi, Y. Ishigaki, and M. Fujii, "Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities," Physical Review B, vol. 86, no. 4, p. 045408, 2012.
[33] S. Kéna‐Cohen, S. A. Maier, and D. D. Bradley, "Ultrastrongly Coupled Exciton–Polaritons in Metal‐Clad Organic Semiconductor Microcavities," Advanced Optical Materials, vol. 1, no. 11, pp. 827-833, 2013.
[34] M. Fox, Quantum optics: an introduction. OUP Oxford, 2006.
[35] C. Ciuti, G. Bastard, and I. Carusotto, "Quantum vacuum properties of the intersubband cavity polariton field," Physical Review B, vol. 72, no. 11, p. 115303, 2005.
[36] N. M. Peraca, A. Baydin, W. Gao, M. Bamba, and J. Kono, "Ultrastrong light–matter coupling in semiconductors," Semiconductor Quantum Science and Technology, vol. 105, pp. 89-151, 2020.
[37] E. Eizner, J. Brodeur, F. Barachati, A. Sridharan, and S. Kéna-Cohen, "Organic photodiodes with an extended responsivity using ultrastrong light–matter coupling," ACS Photonics, vol. 5, no. 7, pp. 2921-2927, 2018.
[38] D. Comoretto, Organic and hybrid photonic crystals. Springer, 2015.
[39] M. M. Mandoc, W. Veurman, L. J. A. Koster, B. de Boer, and P. W. Blom, "Origin of the reduced fill factor and photocurrent in MDMO‐PPV: PCNEPV all‐polymer solar cells," Advanced Functional Materials, vol. 17, no. 13, pp. 2167-2173, 2007.
[40] 林煒紘, "超強耦合高分子發光二極體之研究," 碩士論文, 國立中央大學, 民國一零八年.
[41] B. Gündüz, "Optical properties of poly [2-methoxy-5-(3′, 7′-dimethyloctyloxy)-1, 4-phenylenevinylene] light-emitting polymer solutions: effects of molarities and solvents," Polymer Bulletin, vol. 72, no. 12, pp. 3241-3267, 2015.
[42] R. Kaçar, S. P. Mucur, F. Yıldız, S. Dabak, and E. Tekin, "Highly efficient inverted organic light emitting diodes by inserting a zinc oxide/polyethyleneimine (ZnO: PEI) nano-composite interfacial layer," Nanotechnology, vol. 28, no. 24, p. 245204, 2017. |