博碩士論文 104826001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:94 、訪客IP:18.118.30.153
姓名 李安倫(An-Lun Li)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 microRNAs作為放射治療預後之生物標誌物與miR-148a-3p於頭頸癌放射敏感度之研究
(The study of the microRNAs as the prognostic biomarkers for the radiotherapy and the radiation effects of miR-148a-3p in head and neck cancer)
相關論文
★ 探討牛樟芝CCM111對細胞訊息傳遞之影響★ Tyloxapol 在大腸癌細胞中的特異性及作用機制之研究
★ MAPK傳導路徑相關微型RNA在黑色素瘤細胞中功能之研究★ 利用MAPK訊息傳導路徑相關的miRNAs來治療BRAF抑制劑的抗藥性在黑色素瘤細胞中之研究
★ 探討miR-567在黑色素細胞瘤中的調控機制★ 探索微型核糖核酸與慢性腎臟病及血液透析病人泌尿道上皮癌生物標記的相關性
★ 以miRNA為基礎開發偵測放射線治療抗性及預後的生物標記★ 偵測微型核糖核酸 miR-524-5p表現量利用原位雜交染色法來作為輔助診斷惡性黑色素瘤的生物標記之研究
★ 研究牛樟芝萃取物 CCM111 的作用機制★ 探討黑色素腫瘤中p53調控miR-524-5p及miR-596表現之機制
★ 泌尿道上皮癌相關的miRNAs在膀胱癌之研究★ 探討BRAF抑制劑透過細胞間訊息誘導腫瘤形成之研究
★ 微型核糖核酸成為放射線治療的預後生物標記之研究★ 發展以血中微型 RNA 作為冠心症(CAD)的非侵入性疾病指標
★ 研究miR-524-5p和miR-567治療在黑色素瘤與BRAF抑製劑的抗藥性黑色素瘤★ 包覆性腹膜硬化症相關miRNAs在腹膜纖維化之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-2-21以後開放)
摘要(中) 放射線治療為頭頸癌及直腸癌常用的治療方法,腫瘤復發仍是導致預後不佳的主要原因,且目前臨床上欠缺有效的方法評估病人的預後。微型RNA(microRNA)被發現參與在基因轉錄後的調控,此外微型RNA被包裹於胞外小體(Extracellular Vesicles)釋放至體液中,藉此扮演訊息傳遞的角色,因而成為液態切片(Liquid Biopsy)重要的一環。文獻中尚無完整的報導關於血液微型RNA的表現量用來評斷放射線治療預後,並近一步探討微型RNA於細胞內的功能與機制。所以我們探尋血液中的微型RNA的表現量,嘗試以量化方法開發血液生物標記,同時也藉由細胞實驗暸解微型RNA參與在放射線抗性的功能與角色。
在此研究中,先透過高通量的方法先篩選出22個表現量可能與預後不良有關的血液微型RNA,其中有9個微型RNA的表現量在治療後有顯著改變,我們也發現發現3個微型RNA的表現量與4種微型RNA比值和預後不良有顯著關係。透過公開數據庫調查頭頸癌組織中微型RNA的表現量,結果發現miR-519d-3p的表現量與癌症的五年存活率有顯著相關。最後利用血液中的微型RNA比值、腫瘤期別等資料,以邏輯式回歸(logistic regression)建立2種預測模型,用來預測治療6個月的預後狀態。
放射線治療主要的機制是讓細胞中DNA斷裂,進一步激活DNA損傷反應(DNA damage response) 促使細胞凋亡或細胞週期停滯。在我們發現的微型RNA中, miR-342-5p、miR-148a-3p、miR-323a-3p等3個微型RNA先前並無調控放射線抗性、DNA損傷反應及其下游的訊息傳遞之相關研究。我們針對miR-148a-3p深入探討如何在頭頸癌中調控放射線抗性,以及可能的機制。結果發現細胞照射放射線後miR-148a-3p表現量顯著降低。相反的,過度表現miR-148a-3p並照射放射線可以抑制癌細胞增殖、遷移能力,另外也觀察到細胞中DNA損傷及基因組不穩定性增加。我們發現miR-148a-3p可能藉由調控ITGA5、14-3-3或釋放至培養基中(Conditional media)與其他細胞進行訊息傳遞,最終改變腫瘤放射線抗性。有趣的是,研究中也發現放射線會降低細胞miR-148a-3p的釋放量,促進未照射放射線癌細胞增殖、遷移等能力(bystander effect)。相反的提高培養基中miR-148a-3p含量,則可以抑制此現象。這些結果顯示了癌細胞可以藉由miR-148a-3p表現量調控頭頸癌的放射線抗性,並透過釋放miR-148a-3p改變腫瘤微環境(tumor microenvironment)。
摘要(英) Radiotherapy is a common type of cancer treatment used for treating head and neck cancer (HNSCC), and rectal cancer (RC). Unfortunately, the local recurrence or metastasis leads to treatment failure. Today, there are no effective methods for evaluating the risk of cancer recurrence. MicroRNAs (miRNA) are involved in post-transcriptional gene regulation. In addition, miRNAs are packed into extracellular vesicles and released into the body fluids that have played a role in cell communication. Hence, the miRNA expression in the body fluids is considered a potential target of liquid biopsy. To date, no research has suggested that the miRNA expression in the blood could regulate cancer radiosensitivity or play the role of message transport. Therefore, we have discovered miRNA as a blood biomarker by investigating the miRNA expression level in the plasma samples. Also, the candidate miRNA expression in plasma could be considered an important indicator for promoting radioresistant.
In this research, the high-throughput method was used to select the 22 miRNAs as the candidates for radiation response. Nine miRNAs’ expressions showed a significant change after radiotherapy. Furthermore, the expression level of three miRNAs and the four miRNA ratios significantly changes in the poor responsive group. The public data also showed the expression of miR-519d-3p in the tissue of HNSCC is associated with a 5-year survival period. Finally, two prediction models were established for predicting the response of radiotherapy after six months of treatment by multiple logistic regression.
DNA breaks are the majorly caused by radiotherapy. This occurrence induces cell apoptosis and cell-cycle arrest by the DNA damage response. In chapter three, the activities of three miRNAs, including miR-342-5p, miR-148a-3p, and miR-323a-3p, involved in the radioresistance or regulation of the genes by DNA damage response remain unclear. We delved into the radiation effect of miR-148a-3p in HNSCC. The result showed that the expression level of miR-148a-3p was significantly decreased by radiation in the HNSCC cell line. Moreover, overexpression of the miR-148a-3p increased the radiation effect by the tests of cell viability, migration, and colony formation ability. Furthermore, immunofluorescence staining showed that miR-148a-3p also increased the DNA damage level further causing genome instability. MiR-148a-3p may regulate integrin alpha 5 (ITGA5), Rho-associated, coiled-coil-containing protein kinase 1 (ROCK1), 14-3-3, and increase the effect of radiation. Interestingly, miR-148a-3p are released into the conditioned media (CM). Radiation suppresses the release of miR-148a-3p in CM and further induces the cell viability and migration ability of non-radiated bystander cells. Moreover, a high expression level of miR-148a-3p in CM inhibits these effects.
Taken together, the in vivo study shows that miR-148a-3p may not only play an important role in the radiation effect but may change the signaling of miR-148a-3p in tumor microenvironments.
關鍵字(中) ★ 微型核糖核酸
★ 癌症
★ 放射線治療
★ 生物標記
★ 治療預後
★ 旁觀者效應
關鍵字(英) ★ microRNA
★ Cancer
★ Radiotherapy
★ Biomarker
★ Prognosis
★ Bystander effect
論文目次 中文摘要 VI
ABSTRACT VIII
LIST OF FIGURES XIV
LIST OF TABLES XVI
LIST OF ABBREVIATIONS (ALPHABETICAL ORDER) XVII
CHAPTER 1: LITERATURE REVIEW 1
1.1. Introduction to radiotherapy 1
1.1.1. Radiotherapy for cancer 1
1.1.2. Radioresistance of cancer 2
1.1.3. Radiotherapy induced bystander effect 3
1.1.4. DNA damage and repair in radiotherapy 4
1.2. Introduction to HNSCC 5
1.2.1. Signs and symptoms of HNSCC 5
1.2.2. The radiotherapy for HNSCC 6
1.3. Introduction to RC 6
1.3.1. Signs and symptoms of RC 6
1.3.2. The radiotherapy for RC 7
1.4. Introduction to microRNA (miRNA) 7
1.4.1. Biogenesis and mechanism of miRNA 8
1.4.2. miRNA dysregulation in disease 8
1.4.3. The miRNA in extracellular vesicles 9
1.5. Significances and purpose 9
CHAPTER 2: MATERIALS AND METHODS 22
2.1. Patient recruitments 22
2.2. Ethics approval and informed consent 22
2.3. Plasma preparation and miRNA isolation and quantification by RT-PCR 22
2.4. Cells Culturing and maintaining 23
2.5. Radiation treatment on culture cells 23
2.6. miRNA mimic transfection 24
2.7. Colony formation assay 24
2.8. Cell proliferation assay 25
2.9. Wound healing assay 25
2.10. microRNA target prediction 25
2.11. Western blotting 26
2.12. Immunofluorescence and micronucleus staining 26
2.13. Conditioned medium (CM) transfer 27
2.14. Overall survival curve and statistical analysis 27
CHAPTER 3: THE MIRNA CLASSIFIERS AS THE ANCILLARY PROGNOSTIC SIGNATURE FOR RADIOTHERAPY 29
3.1. Introduction 29
3.2. Results 30
3.2.1. Identification of candidate miRNAs in plasma to differentially expressed between poor response and response groups of radiotherapy. 30
3.2.2. Changes in miRNA expression levels upon radiotherapy 31
3.2.3. miRNAs expression levels linked to radiotherapy responses 31
3.2.4. Ratio analysis for candidate miRNAs in plasma 32
3.2.5. Two classifiers for predicting the response of radiotherapy 33
3.3. Discussion 34
CHAPTER 4: MIR-148A-3P: POTENTIAL TARGETS FOR THE DEVELOPMENT OF A RADIOSENSITIZER 52
4.1. Introduction 52
4.2. Results 53
4.2.1. Candidate miRNAs induce radiosensitivity by cell viability assay in HNSCC 53
4.2.2. Association of miR-148a-3p expression and radiation response 54
4.2.3. miR-148a-3p enhances the radiosensitivity by wound healing assay upon radiation 55
4.2.4. miR-148a-3p induces DNA damage and decreases the genome stability upon radiation 56
4.2.5. 14-3-3, ITGA5, and ROCK1 are the potential targets of miR-148a-3p 57
4.2.6. Low expression of miR-148a-3p is observed in radiated conditional media, which could cause a bystander effect 57
4.2.7. Expression of miR-148a-3p in non-radiated cells regulate the bystander effect 58
4.3. Discussion 60
CHAPTER 5: CONCLUDING REMARKS AND FUTURE DIRECTION 86
5.1. Conclusion remarks 86
5.2. Future direction 88
5.2.1. To investigate the mechanisms of miR-148a-3p involved in radiosensitivity. 88
5.2.2. To investigate whether the miR-148a-3p are packed in the EVs, further causing bystander effect 91
5.2.3. To know the upstream regulator of miR-148a-3p 93
CHAPTER 6: REFERENCES 100
CHAPTER 7: APPENDIX 114
7.1. Publication list 114
7.2. Patient list 115
7.2.1. 中華民國 115
7.2.2. 美國 115
參考文獻 1 Wei F, Wu Y, Tang L, Xiong F, Guo C, Li X, et al. Trend analysis of cancer incidence and mortality in China. Sci China Life Sci. 2017; 60: 1271-75.
2 He Y, Jing Y, Wei F, Tang Y, Yang L, Luo J, et al. Long non-coding RNA PVT1 predicts poor prognosis and induces radioresistance by regulating DNA repair and cell apoptosis in nasopharyngeal carcinoma. Cell Death Dis. 2018; 9: 235.
3 Jagsi R. Progress and controversies: radiation therapy for invasive breast cancer. CA Cancer J Clin. 2014; 64: 135-52.
4 Barker HE, Paget JT, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 2015; 15: 409-25.
5 Aebersold DM, Burri P, Beer KT, Laissue J, Djonov V, Greiner RH, et al. Expression of hypoxia-inducible factor-1alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res. 2001; 61: 2911-6.
6 Koukourakis MI, Giatromanolaki A, Sivridis E, Simopoulos C, Turley H, Talks K, et al. Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2002; 53: 1192-202.
7 Rycaj K, Tang DG. Cancer stem cells and radioresistance. Int J Radiat Biol. 2014; 90: 615-21.
8 Lidia Luzhna JF, Olga Kovalchuk. High and low dose radiation effects on mammary adenocarcinoma cells – an epigenetic connection. 2016.
9 Thariat J, Hannoun-Levi JM, Sun Myint A, Vuong T, Gerard JP. Past, present, and future of radiotherapy for the benefit of patients. Nat Rev Clin Oncol. 2013; 10: 52-60.
10 Tang L, Wei F, Wu Y, He Y, Shi L, Xiong F, et al. Role of metabolism in cancer cell radioresistance and radiosensitization methods. J Exp Clin Cancer Res. 2018; 37: 87.
11 Zhao L, Bode AM, Cao Y, Dong Z. Regulatory mechanisms and clinical perspectives of miRNA in tumor radiosensitivity. Carcinogenesis. 2012; 33: 2220-7.
12 Eke I, Cordes N. Radiobiology goes 3D: how ECM and cell morphology impact on cell survival after irradiation. Radiother Oncol. 2011; 99: 271-8.
13 Kim JJ, Tannock IF. Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat Rev Cancer. 2005; 5: 516-25.
14 Jacob NK, Cooley JV, Yee TN, Jacob J, Alder H, Wickramasinghe P, et al. Identification of sensitive serum microRNA biomarkers for radiation biodosimetry. PLoS One. 2013; 8: e57603.
15 Yu Q, Li B, Li P, Shi Z, Vaughn A, Zhu L, et al. Plasma microRNAs to predict the response of radiotherapy in esophageal squamous cell carcinoma patients. Am J Transl Res. 2015; 7: 2060-71.
16 Moertl S, Mutschelknaus L, Heider T, Atkinson MJ. MicroRNAs as novel elements in personalized radiotherapy. Translational Cancer Research. 2016; 5: S1262-S69.
17 Kerns SL, Dorling L, Fachal L, Bentzen S, Pharoah PD, Barnes DR, et al. Meta-analysis of Genome Wide Association Studies Identifies Genetic Markers of Late Toxicity Following Radiotherapy for Prostate Cancer. EBioMedicine. 2016; 10: 150-63.
18 Vilalta M, Rafat M, Graves EE. Effects of radiation on metastasis and tumor cell migration. Cell Mol Life Sci. 2016; 73: 2999-3007.
19 Moncharmont C, Levy A, Guy JB, Falk AT, Guilbert M, Trone JC, et al. Radiation-enhanced cell migration/invasion process: a review. Crit Rev Oncol Hematol. 2014; 92: 133-42.
20 Edalat L, Stegen B, Klumpp L, Haehl E, Schilbach K, Lukowski R, et al. BK K+ channel blockade inhibits radiation-induced migration/brain infiltration of glioblastoma cells. Oncotarget. 2016; 7: 14259-78.
21 Neville BW, Day TA. Oral cancer and precancerous lesions. CA Cancer J Clin. 2002; 52: 195-215.
22 Zhou G, Liu Z, Myers JN. TP53 Mutations in Head and Neck Squamous Cell Carcinoma and Their Impact on Disease Progression and Treatment Response. J Cell Biochem. 2016; 117: 2682-92.
23 Martin ST, Heneghan HM, Winter DC. Systematic review and meta-analysis of outcomes following pathological complete response to neoadjuvant chemoradiotherapy for rectal cancer. Br J Surg. 2012; 99: 918-28.
24 Lee YC, Hsieh CC, Chuang JP. Prognostic significance of partial tumor regression after preoperative chemoradiotherapy for rectal cancer: a meta-analysis. Dis Colon Rectum. 2013; 56: 1093-101.
25 Song C, Chung JH, Kang SB, Kim DW, Oh HK, Lee HS, et al. Impact of Tumor Regression Grade as a Major Prognostic Factor in Locally Advanced Rectal Cancer after Neoadjuvant Chemoradiotherapy: A Proposal for a Modified Staging System. Cancers (Basel). 2018; 10.
26 Wang R, Zhou T, Liu W, Zuo L. Molecular mechanism of bystander effects and related abscopal/cohort effects in cancer therapy. Oncotarget. 2018; 9: 18637-47.
27 Suzuki K, Yamashita S. Radiation-Induced Bystander Response: Mechanism and Clinical Implications. Adv Wound Care (New Rochelle). 2014; 3: 16-24.
28 Wang JS, Wang HJ, Qian HL. Biological effects of radiation on cancer cells. Mil Med Res. 2018; 5: 20.
29 Belyakov OV, Mitchell SA, Parikh D, Randers-Pehrson G, Marino SA, Amundson SA, et al. Biological effects in unirradiated human tissue induced by radiation damage up to 1 mm away. Proc Natl Acad Sci U S A. 2005; 102: 14203-8.
30 Azzam EI, Little JB. The radiation-induced bystander effect: evidence and significance. Hum Exp Toxicol. 2004; 23: 61-5.
31 Shao C, Stewart V, Folkard M, Michael BD, Prise KM. Nitric oxide-mediated signaling in the bystander response of individually targeted glioma cells. Cancer Res. 2003; 63: 8437-42.
32 Zhou H, Ivanov VN, Lien YC, Davidson M, Hei TK. Mitochondrial function and nuclear factor-kappaB-mediated signaling in radiation-induced bystander effects. Cancer Res. 2008; 68: 2233-40.
33 Shao C, Furusawa Y, Aoki M, Matsumoto H, Ando K. Nitric oxide-mediated bystander effect induced by heavy-ions in human salivary gland tumour cells. Int J Radiat Biol. 2002; 78: 837-44.
34 Chaudhry MA, Omaruddin RA. Differential regulation of microRNA expression in irradiated and bystander cells. Mol Biol (Mosk). 2012; 46: 634-43.
35 Jiang MJ, Chen YY, Dai JJ, Gu DN, Mei Z, Liu FR, et al. Dying tumor cell-derived exosomal miR-194-5p potentiates survival and repopulation of tumor repopulating cells upon radiotherapy in pancreatic cancer. Mol Cancer. 2020; 19: 68.
36 Hu W, Xu S, Yao B, Hong M, Wu X, Pei H, et al. MiR-663 inhibits radiation-induced bystander effects by targeting TGFB1 in a feedback mode. RNA Biol. 2014; 11: 1189-98.
37 Wang Y, Taniguchi T. MicroRNAs and DNA damage response: implications for cancer therapy. Cell Cycle. 2013; 12: 32-42.
38 Goldstein M, Kastan MB. The DNA damage response: implications for tumor responses to radiation and chemotherapy. Annu Rev Med. 2015; 66: 129-43.
39 Beli P, Lukashchuk N, Wagner SA, Weinert BT, Olsen JV, Baskcomb L, et al. Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response. Mol Cell. 2012; 46: 212-25.
40 Reinhardt HC, Aslanian AS, Lees JA, Yaffe MB. p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell. 2007; 11: 175-89.
41 Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev. 2000; 14: 1448-59.
42 Lavin MF. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol. 2008; 9: 759-69.
43 Zha S, Guo C, Boboila C, Oksenych V, Cheng HL, Zhang Y, et al. ATM damage response and XLF repair factor are functionally redundant in joining DNA breaks. Nature. 2011; 469: 250-4.
44 Sorensen CS, Hansen LT, Dziegielewski J, Syljuasen RG, Lundin C, Bartek J, et al. The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol. 2005; 7: 195-201.
45 Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science. 2003; 300: 1542-8.
46 Carroll B, Donaldson JC, Obeid L. Sphingolipids in the DNA damage response. Adv Biol Regul. 2015; 58: 38-52.
47 Kempf H, Bleicher M, Meyer-Hermann M. Spatio-Temporal Dynamics of Hypoxia during Radiotherapy. PLoS One. 2015; 10: e0133357.
48 He L, He X, Lowe SW, Hannon GJ. microRNAs join the p53 network--another piece in the tumour-suppression puzzle. Nat Rev Cancer. 2007; 7: 819-22.
49 Pichiorri F, Suh SS, Rocci A, De Luca L, Taccioli C, Santhanam R, et al. Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell. 2010; 18: 367-81.
50 Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Pineros M, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019; 144: 1941-53.
51 Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68: 394-424.
52 Lajer CB, von Buchwald C. The role of human papillomavirus in head and neck cancer. APMIS. 2010; 118: 510-9.
53 Kim L, King T, Agulnik M. Head and neck cancer: changing epidemiology and public health implications. Oncology (Williston Park). 2010; 24: 915-9, 24.
54 Furness S, Glenny AM, Worthington HV, Pavitt S, Oliver R, Clarkson JE, et al. Interventions for the treatment of oral cavity and oropharyngeal cancer: chemotherapy. Cochrane Database Syst Rev. 2011: CD006386.
55 Perri F, Pacelli R, Della Vittoria Scarpati G, Cella L, Giuliano M, Caponigro F, et al. Radioresistance in head and neck squamous cell carcinoma: Biological bases and therapeutic implications. Head Neck. 2015; 37: 763-70.
56 Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet. 2014; 383: 1490-502.
57 Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RGS, Barzi A, et al. Colorectal cancer statistics, 2017. CA Cancer J Clin. 2017; 67: 177-93.
58 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019; 69: 7-34.
59 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018; 68: 7-30.
60 Stein U, Schlag PM. Clinical, biological, and molecular aspects of metastasis in colorectal cancer. Recent Results Cancer Res. 2007; 176: 61-80.
61 Armaghany T, Wilson JD, Chu Q, Mills G. Genetic alterations in colorectal cancer. Gastrointest Cancer Res. 2012; 5: 19-27.
62 Al-Sohaily S, Biankin A, Leong R, Kohonen-Corish M, Warusavitarne J. Molecular pathways in colorectal cancer. J Gastroenterol Hepatol. 2012; 27: 1423-31.
63 Sancho E, Batlle E, Clevers H. Signaling pathways in intestinal development and cancer. Annu Rev Cell Dev Biol. 2004; 20: 695-723.
64 Kong L, Peng J, Li J, Wang F, Li C, Ding P, et al. Prolonged surveillance of colorectal cancer patients after curative surgeries beyond five years of follow-up. Ann Transl Med. 2019; 7: 608.
65 Ludmir EB, Palta M, Willett CG, Czito BG. Total neoadjuvant therapy for rectal cancer: An emerging option. Cancer. 2017; 123: 1497-506.
66 Tamas K, Walenkamp AM, de Vries EG, van Vugt MA, Beets-Tan RG, van Etten B, et al. Rectal and colon cancer: Not just a different anatomic site. Cancer Treat Rev. 2015; 41: 671-9.
67 Bartel DP. MicroRNAs: Genomics, Biogenesis, Mecahnism, and Function. Cell. 2004; 116.
68 Gurianova V, Stroy D, Ciccocioppo R, Gasparova I, Petrovic D, Soucek M, et al. Stress response factors as hub-regulators of microRNA biogenesis: implication to the diseased heart. Cell Biochem Funct. 2015; 33: 509-18.
69 Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nature genetics. 2008; 40: 43-50.
70 Mlcochova J, Faltejskova P, Nemecek R, Svoboda M, Slaby O. MicroRNAs targeting EGFR signalling pathway in colorectal cancer. Journal of cancer research and clinical oncology. 2013; 139: 1615-24.
71 Kasinski AL, Slack FJ. Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer. 2011; 11: 849-64.
72 Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005; 435: 834-8.
73 Mall C, Rocke DM, Durbin-Johnson B, Weiss RH. Stability of miRNA in human urine supports its biomarker potential. Biomark Med. 2013; 7: 623-31.
74 Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008; 105: 10513-8.
75 Sundarbose K, Kartha RV, Subramanian S. MicroRNAs as Biomarkers in Cancer. Diagnostics (Basel). 2013; 3: 84-104.
76 Negrini M, Nicoloso MS, Calin GA. MicroRNAs and cancer--new paradigms in molecular oncology. Curr Opin Cell Biol. 2009; 21: 470-9.
77 Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014; 30: 255-89.
78 Tricarico C, Clancy J, D′Souza-Schorey C. Biology and biogenesis of shed microvesicles. Small GTPases. 2017; 8: 220-32.
79 Luo A, Zhou X, Shi X, Zhao Y, Men Y, Chang X, et al. Exosome-derived miR-339-5p mediates radiosensitivity by targeting Cdc25A in locally advanced esophageal squamous cell carcinoma. Oncogene. 2019; 38: 4990-5006.
80 George JN, Thoi LL, McManus LM, Reimann TA. Isolation of human platelet membrane microparticles from plasma and serum. Blood. 1982; 60: 834-40.
81 Chevalier F, Hamdi DH, Saintigny Y, Lefaix JL. Proteomic overview and perspectives of the radiation-induced bystander effects. Mutat Res Rev Mutat Res. 2015; 763: 280-93.
82 Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 2019; 20: 698-714.
83 He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004; 5: 522-31.
84 Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009; 45: 228-47.
85 Li AL, Chou CY, Chen CL, Wu KL, Lin SC, Chen HC, et al. The MicroRNA Prediction Models as Ancillary Diagnosis Biomarkers for Urothelial Carcinoma in Patients With Chronic Kidney Disease. Front Med (Lausanne). 2021; 8: 726214.
86 Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer. 2005; 104: 1129-37.
87 Harrington KJ, Billingham LJ, Brunner TB, Burnet NG, Chan CS, Hoskin P, et al. Guidelines for preclinical and early phase clinical assessment of novel radiosensitisers. Br J Cancer. 2011; 105: 628-39.
88 Ishigami T, Uzawa K, Higo M, Nomura H, Saito K, Kato Y, et al. Genes and molecular pathways related to radioresistance of oral squamous cell carcinoma cells. Int J Cancer. 2007; 120: 2262-70.
89 Schena FP, Serino G, Sallustio F. MicroRNAs in kidney diseases: new promising biomarkers for diagnosis and monitoring. Nephrol Dial Transplant. 2014; 29: 755-63.
90 Summerer I, Unger K, Braselmann H, Schuettrumpf L, Maihoefer C, Baumeister P, et al. Circulating microRNAs as prognostic therapy biomarkers in head and neck cancer patients. Br J Cancer. 2015; 113: 76-82.
91 Yang R, Fu Y, Zeng Y, Xiang M, Yin Y, Li L, et al. Serum miR-20a is a promising biomarker for gastric cancer. Biomed Rep. 2017; 6: 429-34.
92 Henderson MC, Azorsa DO. The genomic and proteomic content of cancer cell-derived exosomes. Front Oncol. 2012; 2: 38.
93 Gandellini P, Rancati T, Valdagni R, Zaffaroni N. miRNAs in tumor radiation response: bystanders or participants? Trends Mol Med. 2014; 20: 529-39.
94 Metheetrairut C, Slack FJ. MicroRNAs in the ionizing radiation response and in radiotherapy. Curr Opin Genet Dev. 2013; 23: 12-9.
95 Templin T, Paul S, Amundson SA, Young EF, Barker CA, Wolden SL, et al. Radiation-induced micro-RNA expression changes in peripheral blood cells of radiotherapy patients. Int J Radiat Oncol Biol Phys. 2011; 80: 549-57.
96 Marta GN, Garicochea B, Carvalho AL, Real JM, Kowalski LP. MicroRNAs, cancer and ionizing radiation: Where are we? Rev Assoc Med Bras (1992). 2015; 61: 275-81.
97 Saleh AD, Savage JE, Cao L, Soule BP, Ly D, DeGraff W, et al. Cellular stress induced alterations in microRNA let-7a and let-7b expression are dependent on p53. PLoS One. 2011; 6: e24429.
98 Kwak SY, Yang JS, Kim BY, Bae IH, Han YH. Ionizing radiation-inducible miR-494 promotes glioma cell invasion through EGFR stabilization by targeting p190B rhoGAP. Biochim Biophys Acta. 2014; 1843: 508-16.
99 Weng JH, Yu CC, Lee YC, Lin CW, Chang WW, Kuo YL. miR-494-3p Induces Cellular Senescence and Enhances Radiosensitivity in Human Oral Squamous Carcinoma Cells. Int J Mol Sci. 2016; 17.
100 Girardi C, De Pitta C, Casara S, Sales G, Lanfranchi G, Celotti L, et al. Analysis of miRNA and mRNA expression profiles highlights alterations in ionizing radiation response of human lymphocytes under modeled microgravity. PLoS One. 2012; 7: e31293.
101 Abou-El-Ardat K, Monsieurs P, Anastasov N, Atkinson M, Derradji H, De Meyer T, et al. Low dose irradiation of thyroid cells reveals a unique transcriptomic and epigenetic signature in RET/PTC-positive cells. Mutat Res. 2012; 731: 27-40.
102 Shin S, Cha HJ, Lee EM, Lee SJ, Seo SK, Jin HO, et al. Alteration of miRNA profiles by ionizing radiation in A549 human non-small cell lung cancer cells. Int J Oncol. 2009; 35: 81-6.
103 Wang XC, Du LQ, Tian LL, Wu HL, Jiang XY, Zhang H, et al. Expression and function of miRNA in postoperative radiotherapy sensitive and resistant patients of non-small cell lung cancer. Lung Cancer. 2011; 72: 92-9.
104 McDermott N, Meunier A, Wong S, Buchete V, Marignol L. Profiling of a panel of radioresistant prostate cancer cells identifies deregulation of key miRNAs. Clinical and Translational Radiation Oncology. 2017; 2: 63-68.
105 Kawakita D, Matsuo K. Alcohol and head and neck cancer. Cancer Metastasis Rev. 2017; 36: 425-34.
106 Scaife JE, Barnett GC, Noble DJ, Jena R, Thomas SJ, West CM, et al. Exploiting biological and physical determinants of radiotherapy toxicity to individualize treatment. Br J Radiol. 2015; 88: 20150172.
107 Inui M, Martello G, Piccolo S. MicroRNA control of signal transduction. Nat Rev Mol Cell Biol. 2010; 11: 252-63.
108 Huang T, Yin L, Wu J, Gu JJ, Wu JZ, Chen D, et al. MicroRNA-19b-3p regulates nasopharyngeal carcinoma radiosensitivity by targeting TNFAIP3/NF-kappaB axis. J Exp Clin Cancer Res. 2016; 35: 188.
109 Wu SY, Wu AT, Liu SH. MicroRNA-17-5p regulated apoptosis-related protein expression and radiosensitivity in oral squamous cell carcinoma caused by betel nut chewing. Oncotarget. 2016; 7: 51482-93.
110 Xu T, Xiao D. Oleuropein enhances radiation sensitivity of nasopharyngeal carcinoma by downregulating PDRG1 through HIF1alpha-repressed microRNA-519d. J Exp Clin Cancer Res. 2017; 36: 3.
111 Qu JQ, Yi HM, Ye X, Zhu JF, Yi H, Li LN, et al. MiRNA-203 Reduces Nasopharyngeal Carcinoma Radioresistance by Targeting IL8/AKT Signaling. Mol Cancer Ther. 2015; 14: 2653-64.
112 Li HP, Huang HY, Lai YR, Huang JX, Chang KP, Hsueh C, et al. Silencing of miRNA-148a by hypermethylation activates the integrin-mediated signaling pathway in nasopharyngeal carcinoma. Oncotarget. 2014; 5: 7610-24.
113 Bourton EC, Plowman PN, Smith D, Arlett CF, Parris CN. Prolonged expression of the gamma-H2AX DNA repair biomarker correlates with excess acute and chronic toxicity from radiotherapy treatment. Int J Cancer. 2011; 129: 2928-34.
114 Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 2003; 421: 499-506.
115 Muller WU, Nusse M, Miller BM, Slavotinek A, Viaggi S, Streffer C. Micronuclei: a biological indicator of radiation damage. Mutat Res. 1996; 366: 163-9.
116 Tzivion G, Dobson M, Ramakrishnan G. FoxO transcription factors; Regulation by AKT and 14-3-3 proteins. Biochim Biophys Acta. 2011; 1813: 1938-45.
117 Masters SC, Yang H, Datta SR, Greenberg ME, Fu H. 14-3-3 inhibits Bad-induced cell death through interaction with serine-136. Mol Pharmacol. 2001; 60: 1325-31.
118 Beck C, Piontek G, Haug A, Bas M, Knopf A, Stark T, et al. The kallikrein-kinin-system in head and neck squamous cell carcinoma (HNSCC) and its role in tumour survival, invasion, migration and response to radiotherapy. Oral Oncol. 2012; 48: 1208-19.
119 Pickhard AC, Margraf J, Knopf A, Stark T, Piontek G, Beck C, et al. Inhibition of radiation induced migration of human head and neck squamous cell carcinoma cells by blocking of EGF receptor pathways. BMC Cancer. 2011; 11: 388.
120 Mutschelknaus L, Peters C, Winkler K, Yentrapalli R, Heider T, Atkinson MJ, et al. Exosomes Derived from Squamous Head and Neck Cancer Promote Cell Survival after Ionizing Radiation. PLoS One. 2016; 11: e0152213.
121 Mutschelknaus L, Azimzadeh O, Heider T, Winkler K, Vetter M, Kell R, et al. Radiation alters the cargo of exosomes released from squamous head and neck cancer cells to promote migration of recipient cells. Sci Rep. 2017; 7: 12423.
122 Hutchinson MND, Mierzwa M, D′Silva NJ. Radiation resistance in head and neck squamous cell carcinoma: dire need for an appropriate sensitizer. Oncogene. 2020; 39: 3638-49.
123 Zhang MX, Wang L, Zeng L, Tu ZW. Corrigendum: LCN2 Is a Potential Biomarker for Radioresistance and Recurrence in Nasopharyngeal Carcinoma. Front Oncol. 2021; 11: 670714.
124 Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007; 128: 683-92.
125 Liu Y, Yang M, Luo J, Zhou H. Radiotherapy targeting cancer stem cells "awakens" them to induce tumour relapse and metastasis in oral cancer. Int J Oral Sci. 2020; 12: 19.
126 Banerjee R, Russo N, Liu M, Basrur V, Bellile E, Palanisamy N, et al. Corrigendum: TRIP13 promotes error-prone nonhomologous end joining and induces chemoresistance in head and neck cancer. Nat Commun. 2016; 7: 10726.
127 Chang HW, Kim SY, Yi SL, Son SH, Song DY, Moon SY, et al. Expression of Ku80 correlates with sensitivities to radiation in cancer cell lines of the head and neck. Oral Oncol. 2006; 42: 979-86.
128 Helton ES, Chen X. p53 modulation of the DNA damage response. J Cell Biochem. 2007; 100: 883-96.
129 Ang KK, Berkey BA, Tu X, Zhang HZ, Katz R, Hammond EH, et al. Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res. 2002; 62: 7350-6.
130 Liccardi G, Hartley JA, Hochhauser D. EGFR nuclear translocation modulates DNA repair following cisplatin and ionizing radiation treatment. Cancer Res. 2011; 71: 1103-14.
131 Olivares-Urbano MA, Grinan-Lison C, Marchal JA, Nunez MI. CSC Radioresistance: A Therapeutic Challenge to Improve Radiotherapy Effectiveness in Cancer. Cells. 2020; 9.
132 Li AL, Chung TS, Chan YN, Chen CL, Lin SC, Chiang YR, et al. microRNA expression pattern as an ancillary prognostic signature for radiotherapy. J Transl Med. 2018; 16: 341.
133 Li Y, Deng X, Zeng X, Peng X. The Role of Mir-148a in Cancer. J Cancer. 2016; 7: 1233-41.
134 Wang M, Zhao Y, Yu ZY, Zhang RD, Li SA, Zhang P, et al. Glioma exosomal microRNA-148a-3p promotes tumor angiogenesis through activating the EGFR/MAPK signaling pathway via inhibiting ERRFI1. Cancer Cell Int. 2020; 20: 518.
135 Kim J, Zhang Y, Skalski M, Hayes J, Kefas B, Schiff D, et al. microRNA-148a is a prognostic oncomiR that targets MIG6 and BIM to regulate EGFR and apoptosis in glioblastoma. Cancer Res. 2014; 74: 1541-53.
136 Wang H, Pan JQ, Luo L, Ning XJ, Ye ZP, Yu Z, et al. NF-kappaB induces miR-148a to sustain TGF-beta/Smad signaling activation in glioblastoma. Mol Cancer. 2015; 14: 2.
137 Li S, Chowdhury R, Liu F, Chou AP, Li T, Mody RR, et al. Tumor-suppressive miR148a is silenced by CpG island hypermethylation in IDH1-mutant gliomas. Clin Cancer Res. 2014; 20: 5808-22.
138 Hei TK, Zhou H, Chai Y, Ponnaiya B, Ivanov VN. Radiation induced non-targeted response: mechanism and potential clinical implications. Curr Mol Pharmacol. 2011; 4: 96-105.
139 Azzam EI, de Toledo SM, Little JB. Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha -particle irradiated to nonirradiated cells. Proc Natl Acad Sci U S A. 2001; 98: 473-8.
140 Narayanan PK, Goodwin EH, Lehnert BE. Alpha particles initiate biological production of superoxide anions and hydrogen peroxide in human cells. Cancer Res. 1997; 57: 3963-71.
141 Lyng FM, Howe OL, McClean B. Reactive oxygen species-induced release of signalling factors in irradiated cells triggers membrane signalling and calcium influx in bystander cells. Int J Radiat Biol. 2011; 87: 683-95.
142 Narayanan PK, LaRue KE, Goodwin EH, Lehnert BE. Alpha particles induce the production of interleukin-8 by human cells. Radiat Res. 1999; 152: 57-63.
143 Zhou H, Ivanov VN, Gillespie J, Geard CR, Amundson SA, Brenner DJ, et al. Mechanism of radiation-induced bystander effect: role of the cyclooxygenase-2 signaling pathway. Proc Natl Acad Sci U S A. 2005; 102: 14641-6.
144 Gow MD, Seymour CB, Ryan LA, Mothersill CE. Induction of bystander response in human glioma cells using high-energy electrons: a role for TGF-beta1. Radiat Res. 2010; 173: 769-78.
145 Koturbash I, Boyko A, Rodriguez-Juarez R, McDonald RJ, Tryndyak VP, Kovalchuk I, et al. Role of epigenetic effectors in maintenance of the long-term persistent bystander effect in spleen in vivo. Carcinogenesis. 2007; 28: 1831-8.
146 Koturbash I, Zemp FJ, Kutanzi K, Luzhna L, Loree J, Kolb B, et al. Sex-specific microRNAome deregulation in the shielded bystander spleen of cranially exposed mice. Cell Cycle. 2008; 7: 1658-67.
147 Kovalchuk O, Zemp FJ, Filkowski JN, Altamirano AM, Dickey JS, Jenkins-Baker G, et al. microRNAome changes in bystander three-dimensional human tissue models suggest priming of apoptotic pathways. Carcinogenesis. 2010; 31: 1882-8.
148 Lyu Z, Yang M, Yang T, Ma M, Yang Z. Metal-Regulatory Transcription Factor-1 Targeted by miR-148a-3p Is Implicated in Human Hepatocellular Carcinoma Progression. Front Oncol. 2021; 11: 700649.
149 Li S, Zhang S, Yang W, Li F, Long H. Diagnostic Value of Exosomal miR-148a-3p in the Serum of Patients with Differentiated Thyroid Cancer. Clin Lab. 2021; 67.
150 Liu J, Han M, Yue Z, Dong C, Wen P, Zhao G, et al. Prediction of Radiosensitivity in Head and Neck Squamous Cell Carcinoma Based on Multiple Omics Data. Front Genet. 2020; 11: 960.
151 Zhao SG, Chang SL, Spratt DE, Erho N, Yu M, Ashab HA, et al. Development and validation of a 24-gene predictor of response to postoperative radiotherapy in prostate cancer: a matched, retrospective analysis. Lancet Oncol. 2016; 17: 1612-20.
152 Tramm T, Mohammed H, Myhre S, Kyndi M, Alsner J, Borresen-Dale AL, et al. Development and validation of a gene profile predicting benefit of postmastectomy radiotherapy in patients with high-risk breast cancer: a study of gene expression in the DBCG82bc cohort. Clin Cancer Res. 2014; 20: 5272-80.
153 Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008; 9: 102-14.
154 Xu S, Wang J, Ding N, Hu W, Zhang X, Wang B, et al. Exosome-mediated microRNA transfer plays a role in radiation-induced bystander effect. RNA Biol. 2015; 12: 1355-63.
155 Jella KK, Rani S, O′Driscoll L, McClean B, Byrne HJ, Lyng FM. Exosomes are involved in mediating radiation induced bystander signaling in human keratinocyte cells. Radiat Res. 2014; 181: 138-45.
156 Mo LJ, Song M, Huang QH, Guan H, Liu XD, Xie DF, et al. Exosome-packaged miR-1246 contributes to bystander DNA damage by targeting LIG4. Br J Cancer. 2018; 119: 492-502.
157 Su H, Fan G, Huang J, Qiu X. YBX1 regulated by Runx3-miR-148a-3p axis facilitates non-small-cell lung cancer progression. Cell Signal. 2021; 85: 110049.
158 Chi XZ, Kim J, Lee YH, Lee JW, Lee KS, Wee H, et al. Runt-related transcription factor RUNX3 is a target of MDM2-mediated ubiquitination. Cancer Res. 2009; 69: 8111-9.
159 Lee JW, van Wijnen A, Bae SC. RUNX3 and p53: How Two Tumor Suppressors Cooperate Against Oncogenic Ras? Adv Exp Med Biol. 2017; 962: 321-32.
160 Sallam M, Benotmane MA, Baatout S, Guns PJ, Aerts A. Radiation-induced cardiovascular disease: an overlooked role for DNA methylation? Epigenetics. 2021: 1-22.
161 Arnoult N, Correia A, Ma J, Merlo A, Garcia-Gomez S, Maric M, et al. Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN. Nature. 2017; 549: 548-52.
162 Shimasaki T, Yamamoto S, Omura R, Ito K, Nishide Y, Yamada H, et al. Novel Platform for Regulation of Extracellular Vesicles and Metabolites Secretion from Cells Using a Multi-Linkable Horizontal Co-Culture Plate. Micromachines (Basel). 2021; 12.
指導教授 馬念涵(Nianhan Ma) 審核日期 2022-2-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明