博碩士論文 108329007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.141.244.201
姓名 王泰傑(Tai-Jie Wang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 以BaCe0.6Zr0.2Y0.2O3-δ為骨架浸潤La0.6Sr0.4Co0.8Fe0.2製備為複合陰極 應用於質子傳導型SOFC之可行性研究
(La0.6Sr0.4Co0.8Fe0.2O3-δ cathodes deposited on BaCe0.6Zr0.2Y0.2O3-δ by infiltration for proton-conducting solid oxide fuel cells)
相關論文
★ 1M KOH中Ag-Cu、Ag-Co二元薄膜觸媒對氧還原之催化★ Mg2Ni1-xCux合金在6M KOH水溶液中之電化學吸放氫性質及相關腐蝕行為之研究
★ 以電化學方法在鋅箔上製備氧化鋅奈米結構★ 固態氧化物燃料電池陰極 La0.8Sr0.2Mn1−xRuxO3之製作與特性研究
★ 奈米氧化鋅結構之電化學研製及其在發光二極體之應用★ 銅微柱表面之電化學析鍍氧化鋅奈米結構研究
★ 香草醛在含50 V% 乙二醇低氯離子溶液中對AA6060鋁合金之腐蝕抑制研究★ 磁控濺鍍製備鋯、鈦共摻氧化鋅薄膜之結構與光電特性分析
★ 即時影像監控導引下連續電鍍製作銅-鋅合金微柱並研究其結構與機械性質★ 鑭、鍶、銀、錳氧化物之製備與其作為固態氧化物燃料電池陰極之研究
★ Photodetector - Light Harvesting and specific surface Enhancement (LivE)★ 具奈米結構赤鐵礦之製備及其在光電化學行為研究
★ 以溶凝膠法製備鋁鈦共摻雜氧化鋅薄膜並研究其微結構,腐蝕及光電化學之特性★ Ba0.5Sr0.5Co0.8Fe0.2O3-δ-La3Ni2O7+δ複合 結構應用於P-SOFC陰極之可行性研究
★ 銅鎳合金微結構之微電鍍研究★ 以微電鍍法製備三維銅錫介金屬化合物微結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用固態反應法製備之電解質BCZY粉末,以濕行星式球磨將粒徑減小增加表面積作為陰極骨架材料,將三種不同燒結溫度作為變數個別為1000 ℃、1100 ℃、1200 ℃,製備出具有足夠孔隙率且與電解質連接性良好的BCZY陰極骨架,以最佳的燒結參數1100 ℃進行後續之浸潤實驗。浸潤溶液使用兩種配方進行比較,一為添加甘胺酸做為螯合劑並使用乙醇做為界面活性劑,為燃燒合成法之浸潤溶液配方,另一為使用乙二醇使前驅溶液脂化,烘乾後添加乙二醇單丁醚作為界面活性劑,以熔膠凝膠法之浸潤溶液配方,進行表面形貌、微觀結構以及孔隙率之探討,接著提升浸潤溶液負載量增加電化學活性位點,並獲得製備複合陰極之最佳負載量。
經由I-V直流極化曲線和電化學交流阻抗頻譜進行深入分析,以瞭解不同陰極結構在質子傳輸型固態氧化物燃料電池中的反應差異,隨著浸潤含量的提升可以增加三相界面的反應面積,導致極化阻抗之下降,並且得知過度的添加會造成孔隙率的不足,使陰極端氧氣無法充分擴散,進行氧還原反應造成額外阻抗的產生。
最佳效能參數為使用乙二醇浸潤溶液,負載量為55.8 wt.%之複合陰極,全電池於800 ℃下測得之效能:開路電壓為0.96 V、功率密度為388 mW/cm2。
摘要(英) In this study, the electrolyte BCZY powder prepared by the solid-state reaction method was used. Ball milling was used to reduce the particle size and increase the surface area as the cathode framework material. For the BCZY cathode backbone with sufficient porosity and good connectivity with the electrolyte, the subsequent infiltration experiment was performed with the best sintering parameter at 1100 ℃. The infiltration solution is compared using two formulations. One is to add glycine as a chelating agent and ethanol as a surfactant, using the infiltration solution formulation of the combustion synthesis method, and the other is to use ethylene glycol to grease the precursor solution. After drying, add ethylene glycol monobutyl ether as a surfactant, use an infiltration solution formula the sol gel method to discuss the surface morphology, microstructure and porosity, and then increase the loading of the infiltration solution to increase electrochemical activity site, and obtain the optimal infiltrated loading on BCZY backbone for preparing the composite cathode.
Through the IV DC polarization curve and the electrochemical AC impedance spectrum for in-depth analysis to understand the reaction difference of different cathode structures in the proton transport solid oxide fuel cell, as the infiltration content increases, the reaction area of the three-phase interface can be increased. This leads to a decrease in polarization resistance, and it is known that excessive addition will result in insufficient porosity, so that oxygen at the cathode side cannot be fully diffused, and the oxygen reduction reaction proceeds to cause additional resistance. The best performance parameters are the composite cathode with a load of 55.8 wt.% using ethylene glycol infiltration solution, and the performance measured at 800 ℃ for the whole battery: open circuit voltage of 0.96 V and power density of 388 mW/cm2..
關鍵字(中) ★ 固態氧化物燃料電池
★ P-SOFC
★ 浸潤法
★ 複合陰極
★ 電化學交流阻抗
關鍵字(英) ★ Solid oxide fuel cell
★ Infiltration
★ Composite cathodes
★ Electrochemical AC impedance spectroscopy
論文目次 摘要 v
Abstract vi
致謝 viii
目錄 ix
表目錄 xii
圖目錄 xiii
符號說明 xvi
第一章 緒論 1
1-1前言 1
1-2研究動機 1
1-3問題所在 2
1-4解決方式 3
第二章 基礎原理與文獻回顧 5
2-1燃料電池簡介 5
2-2 固態氧化物燃料電池原理與介紹 6
2-2-1固態氧化物燃料電池簡介 6
2-2-2固態氧化物燃料電池類型與原理 7
2-2-3固態氧化物燃料電池元件 9
2-3固態氧化物燃料電池陰極 11
2-3-1陰極傳導機制[22] 11
2-3-2陰極晶體結構 13
2-3-3陰極材料製備方式 15
2-4燃料電池電化學檢測 17
2-4-1直流電極化曲線(I-V Curve)原理 17
2-4-2電化學交流阻抗頻譜(EIS)原理 20
2-5文獻回顧 23
2-5-1 SOFC陰極材料 23
2-5-2 SOFC複合陰極 24
2-5-3 浸潤法 25
第三章 實驗方法步驟與設備 28
3-1 實驗原料 28
3-2實驗流程與元件樣品製備 28
3-2-1 BaCe0.6Zr0.2Y0.2O3-δ(BCZY)粉末製備 28
3-2-2陽極基板製備 28
3-2-3電解質層製備 29
3-2-4 BaCe0.6Zr0.2Y0.2O3-δ陰極骨架製備 30
3-2-5 全電池製備 30
3-2-6 導電度樣品製備流程 31
3-3分析設備 32
3-3-1 X光晶體繞射儀器(X-Ray diffraction; XRD) 32
3-3-2掃描式電子顯微鏡(Scanning Electron Microscope; SEM) 33
3-3-3導電度量測 34
3-3-4直流極化曲線測試平台 34
3-3-5電化學交流阻抗頻譜儀 35
第四章 結果 36
4-1 X光晶體繞射分析 36
4-1-1 BCZY粉末之XRD分析 36
4-1-2 LSCF浸潤溶液之XRD分析 36
4-1-3 複合陰極化學穩定性分析 37
4-3表面形貌觀察 37
4-3-1乙醇浸潤溶液配方 37
4-3-2乙二醇浸潤溶液配方 38
4-4微觀結構觀察 38
4-4-1 BCZY骨架之SEM分析 39
4-4-2 浸潤之複合陰極SEM分析 39
4-2 陰極導電度測試 40
4-2-1 BCZY導電度 40
4-2-2 乙醇浸潤溶液LSCF導電度 40
4-2-3 乙二醇浸潤溶液LSCF導電度 40
4-5 I-V直流極化曲線電化學測試分析 41
4-5-1 乙醇浸潤溶液配方 41
4-5-2 乙二醇浸潤溶液配方 41
4-6 電化學交流阻抗頻譜分析 42
4-6-1 乙醇浸潤溶液配方交流阻抗頻譜 42
4-6-2 乙二醇浸潤溶液配方交流阻抗頻譜 42
第五章 討論 44
5-1 BaCe0.6Zr0.2Y0.2O3-δ骨架 44
5-1-1孔隙度分析 44
5-1-2 骨架與電解質連接性觀察 44
5-2 乙醇浸潤溶液 45
5-2-1 XRD 45
5-2-2 表面形貌觀察 45
5-2-3 孔隙度分析 46
5-2-4 導電度分析 46
5-2-5 全電池性能分析 47
5-3 乙二醇浸潤溶液 49
5-3-1 XRD 49
5-3-2 表面形貌觀察 49
5-3-3 孔隙度分析 50
5-3-4 導電度分析 50
5-3-5全電池性能分析 51
第六章 結論與未來工作 54
6-1結論 54
6-2 未來工作 55
參考文獻 56
表格 61
圖片 70
參考文獻 1. W.R. Grove, “XXIV. On voltaic series and the combination of gases by platinum”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 14(86-87): p. 127-130, 1839
2. L. Bi, S. Boulfrad, and E. Traversa, “Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides”, Chemical Society Reviews. 43(24): p. 8255-8270, 2014
3. S. Badwal, S. Giddey, C. Munnings, and A. Kulkarni, “Review of progress in high temperature solid oxide fuel cells”, ChemInform. 46(31): p. no-no, 2015
4. C. Zuo, S. Zha, M. Liu, M. Hatano, and M. Uchiyama, “Ba (Zr0. 1Ce0. 7Y0. 2) O3–δ as an electrolyte for low‐temperature solid‐oxide fuel cells”, Advanced Materials. 18(24): p. 3318-3320, 2006
5. L. Yang, C. Zuo, S. Wang, Z. Cheng, and M. Liu, “A novel composite cathode for low‐temperature SOFCs based on oxide proton conductors”, Advanced Materials. 20(17): p. 3280-3283, 2008
6. L. Yang, S. Wang, K. Blinn, M. Liu, Z. Liu, Z. Cheng, and M. Liu, “Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0. 1Ce0. 7Y0. 2–xYbxO3–δ”, Science. 326(5949): p. 126-129, 2009
7. L. Yang, Z. Liu, S. Wang, Y. Choi, C. Zuo, and M. Liu, “A mixed proton, oxygen ion, and electron conducting cathode for SOFCs based on oxide proton conductors”, Journal of Power Sources. 195(2): p. 471-474, 2010
8. J. Dailly, F. Mauvy, M. Marrony, M. Pouchard, and J.-C. Grenier, “Electrochemical properties of perovskite and A 2 MO 4-type oxides used as cathodes in protonic ceramic half cells”, Journal of Solid State Electrochemistry. 15(2): p. 245-251, 2011
9. W. Sun, Z. Zhu, Y. Jiang, Z. Shi, L. Yan, and W. Liu, “Optimization of BaZr0. 1Ce0. 7Y0. 2O3− δ-based proton-conducting solid oxide fuel cells with a cobalt-free proton-blocking La0. 7Sr0. 3FeO3− δ–Ce0. 8Sm0. 2O2− δ composite cathode”, international journal of hydrogen energy. 36(16): p. 9956-9966, 2011
10. L. Zhao, B. He, B. Lin, H. Ding, S. Wang, Y. Ling, R. Peng, G. Meng, and X. Liu, “High performance of proton-conducting solid oxide fuel cell with a layered PrBaCo2O5+ δ cathode”, Journal of Power Sources. 194(2): p. 835-837, 2009
11. B. Lin, H. Ding, Y. Dong, S. Wang, X. Zhang, D. Fang, and G. Meng, “Intermediate-to-low temperature protonic ceramic membrane fuel cells with Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ–BaZr0. 1Ce0. 7Y0. 2O3-δ composite cathode”, Journal of power sources. 186(1): p. 58-61, 2009
12. Y. Lin, R. Ran, Y. Zheng, Z. Shao, W. Jin, N. Xu, and J. Ahn, “Evaluation of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell”, Journal of Power Sources. 180(1): p. 15-22, 2008
13. J. Dailly, S. Fourcade, A. Largeteau, F. Mauvy, J.-C. Grenier, and M. Marrony, “Perovskite and A2MO4-type oxides as new cathode materials for protonic solid oxide fuel cells”, Electrochimica Acta. 55(20): p. 5847-5853, 2010
14. E. Fabbri, D. Pergolesi, and E. Traversa, “Materials challenges toward proton-conducting oxide fuel cells: a critical review”, Chemical Society Reviews. 39(11): p. 4355-4369, 2010
15. Z. Jiang, C. Xia, and F. Chen, “Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique”, Electrochimica Acta. 55(11): p. 3595-3605, 2010
16. 黃鎮江, 燃料電池,修訂版. 全華科技圖書股份有限公司. 2004
17. 衣寶蓮, 燃料電池-原理與應用,初版. 五南圖書出版股份有限公司. 2005
18. S.C. Singhal and K. Kendall, High-temperature solid oxide fuel cells: fundamentals, design and applications. Elsevier. 2003
19. N.Q. Minh, “Solid oxide fuel cell technology—features and applications”, Solid State Ionics. 174(1-4): p. 271-277, 2004
20. S. Mcintosh and R.J. Gorte, “Direct hydrocarbon solid oxide fuel cells”, Chemical reviews. 104(10): p. 4845-4866, 2004
21. C. Xia and M. Liu, “Novel cathodes for low‐temperature solid oxide fuel cells”, Advanced Materials. 14(7): p. 521-523, 2002
22. R. Peng, T. Wu, W. Liu, X. Liu, and G. Meng, “Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes”, Journal of Materials Chemistry. 20(30): p. 6218-6225, 2010
23. J. Kim, S. Sengodan, G. Kwon, D. Ding, J. Shin, M. Liu, and G. Kim, “Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells”, ChemSusChem. 7(10): p. 2811-2815, 2014
24. Y. Song, Y. Chen, W. Wang, C. Zhou, Y. Zhong, G. Yang, W. Zhou, M. Liu, and Z. Shao, “Self-assembled triple-conducting nanocomposite as a superior protonic ceramic fuel cell cathode”, Joule. 3(11): p. 2842-2853, 2019
25. S.B. Adler, “Factors governing oxygen reduction in solid oxide fuel cell cathodes”, Chemical reviews. 104(10): p. 4791-4844, 2004
26. C. Li, K.C.K. Soh, and P. Wu, “Formability of ABO3 perovskites”, Journal of alloys and compounds. 372(1-2): p. 40-48, 2004
27. T. Ishihara, Perovskite oxide for solid oxide fuel cells. Springer Science & Business Media. 2009
28. H. Arai, T. Yamada, K. Eguchi, and T. Seiyama, “Catalytic combustion of methane over various perovskite-type oxides”, Applied catalysis. 26: p. 265-276, 1986
29. S. Ruddlesden and P. Popper, “New compounds of the K2NiF4 type”, Acta Crystallographica. 10(8): p. 538-539, 1957
30. M. Backhaus-Ricoult, “SOFC–a playground for solid state chemistry”, Solid State Sciences. 10(6): p. 670-688, 2008
31. X. Fang, G. Zhu, C. Xia, X. Liu, and G. Meng, “Synthesis and properties of Ni–SDC cermets for IT–SOFC anode by co-precipitation”, Solid State Ionics. 168(1-2): p. 31-36, 2004
32. L.M. Garcia, D.A. Macedo, G.L. Souza, F.V. Motta, C.A. Paskocimas, and R.M. Nascimento, “Citrate–hydrothermal synthesis, structure and electrochemical performance of La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ cathodes for IT-SOFCs”, Ceramics International. 39(7): p. 8385-8392, 2013
33. S. Zha, Y. Zhang, and M. Liu, “Functionally graded cathodes fabricated by sol-gel/slurry coating for honeycomb SOFCs”, Solid State Ionics. 176(1-2): p. 25-31, 2005
34. M. Marinšek, K. Zupan, and J. Maeek, “Ni–YSZ cermet anodes prepared by citrate/nitrate combustion synthesis”, Journal of power sources. 106(1-2): p. 178-188, 2002
35. W. Zhou, Z. Shao, R. Ran, H. Gu, W. Jin, and N. Xu, “LSCF nanopowder from Cellulose–Glycine‐Nitrate process and its application in Intermediate‐Temperature Solid‐Oxide fuel cells”, Journal of the American Ceramic Society. 91(4): p. 1155-1162, 2008
36. Eg, G. Services, R.M.P. Company, and S.a.I. Corporation, Fuel Cell Handbook. DIANE Publishing. 2000
37. S.M. Haile, “Fuel cell materials and components”, Acta materialia. 51(19): p. 5981-6000, 2003
38. R. O′hayre, S.-W. Cha, W. Colella, and F.B. Prinz, Fuel cell fundamentals. John Wiley & Sons. 2016
39. Q.-A. Huang, R. Hui, B. Wang, and J. Zhang, “A review of AC impedance modeling and validation in SOFC diagnosis”, Electrochimica Acta. 52(28): p. 8144-8164, 2007
40. N.-Y. Hsu, S.-C. Yen, K.-T. Jeng, and C.-C. Chien, “Impedance studies and modeling of direct methanol fuel cell anode with interface and porous structure perspectives”, Journal of power sources. 161(1): p. 232-239, 2006
41. J. Garche, C.K. Dyer, P.T. Moseley, Z. Ogumi, D.A. Rand, and B. Scrosati, Encyclopedia of electrochemical power sources. Newnes. 2013
42. J. Mizusaki, Y. Mima, S. Yamauchi, K. Fueki, and H. Tagawa, “Nonstoichiometry of the perovskite-type oxides La1− xSrxCoO3− δ”, Journal of Solid State Chemistry. 80(1): p. 102-111, 1989
43. K. Lee and A. Manthiram, “Effect of cation doping on the physical properties and electrochemical performance of Nd0. 6Sr0. 4Co0. 8M0. 2O3− δ (M= Ti, Cr, Mn, Fe, Co, and Cu) cathodes”, Solid State Ionics. 178(13-14): p. 995-1000, 2007
44. C. Sun, R. Hui, and J. Roller, “Cathode materials for solid oxide fuel cells: a review”, Journal of Solid State Electrochemistry. 14(7): p. 1125-1144, 2010
45. M.J. Jørgensen and M. Mogensen, “Impedance of solid oxide fuel cell LSM/YSZ composite cathodes”, Journal of the Electrochemical Society. 148(5): p. A433, 2001
46. B. Steele, K. Hori, and S. Uchino, “Kinetic parameters influencing the performance of IT-SOFC composite electrodes”, Solid State Ionics. 135(1-4): p. 445-450, 2000
47. T. Hibino, A. Hashimoto, M. Suzuki, and M. Sano, “A solid oxide fuel cell using Y-doped BaCeO3 with Pd-loaded FeO anode and Ba0. 5Pr0. 5CoO3 cathode at low temperatures”, Journal of the Electrochemical Society. 149(11): p. A1503, 2002
48. Z. Jiang, L. Zhang, K. Feng, and C. Xia, “Nanoscale bismuth oxide impregnated (La, Sr) MnO3 cathodes for intermediate-temperature solid oxide fuel cells”, Journal of power sources. 185(1): p. 40-48, 2008
49. M.Y. Lu, R. Scipioni, B.-K. Park, T. Yang, Y.A. Chart, and S.A. Barnett, “Mechanisms of PrOx performance enhancement of oxygen electrodes for low and intermediate temperature solid oxide fuel cells”, Materials Today Energy. 14: p. 100362, 2019
50. T. Wang, C. Sun, F. Zhen, W. Song, R. Li, and Q. Zhen, “Decreasing the Polarization Resistance of BaCo0. 7Fe0. 2Nb0. 1O3–δ Cathodes by Infiltration of Ce0. 8Y0. 2O2–δ”, Fuel Cells. 16(5): p. 611-616, 2016
51. C. Sındıraç, A. Büyükaksoy, and S. Akkurt, “Electrochemical performance of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3–Ce 0.9 Gd 0.1 O 2-δ composite SOFC cathodes fabricated by electrocatalyst and/or electrocatalyst-ionic conductor infiltration”, Journal of Sol-Gel Science and Technology. 92(1): p. 45-56, 2019
52. M. Shah and S. Barnett, “Solid oxide fuel cell cathodes by infiltration of La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ into Gd-Doped Ceria”, Solid State Ionics. 179(35-36): p. 2059-2064, 2008
53. 葉哲均, 甘胺酸-硝酸燃燒合成法製備固態氧化物燃料電池陰極材料 La0. 8Sr0. 2MnO3, La0. 6Sr0. 4Co0. 2Fe0. 8O3 與其電化學性質之研究. 2014, National Central University.
54. B.-K. Lai, A.C. Johnson, H. Xiong, and S. Ramanathan, “Ultra-thin nanocrystalline lanthanum strontium cobalt ferrite (La0. 6Sr0. 4Co0. 8Fe0. 2O3− δ) films synthesis by RF-sputtering and temperature-dependent conductivity studies”, Journal of Power Sources. 186(1): p. 115-122, 2009
55. S. Ricote and N. Bonanos, “Enhanced sintering and conductivity study of cobalt or nickel doped solid solution of barium cerate and zirconate”, Solid State Ionics. 181(15-16): p. 694-700, 2010
56. C.J. Brinker and G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing. Academic press. 2013
57. F. He, T. Wu, R. Peng, and C. Xia, “Cathode reaction models and performance analysis of Sm0. 5Sr0. 5CoO3− δ–BaCe0. 8Sm0. 2O3− δ composite cathode for solid oxide fuel cells with proton conducting electrolyte”, Journal of Power Sources. 194(1): p. 263-268, 2009
58. R. Zeng and Y. Huang, “Enhancing surface activity of La0. 6Sr0. 4CoO3-δ cathode by a simple infiltration process”, International Journal of Hydrogen Energy. 42(10): p. 7220-7225, 2017
指導教授 林景崎(Jing-Chie Lin) 審核日期 2022-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明