博碩士論文 108481006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:3.145.73.167
姓名 李卉民(Huei-Min Li)  查詢紙本館藏   畢業系所 企業管理學系
論文名稱 發展網絡資料包絡分析模式衡量銀行業治理、創新和營運效率
(Developing a network DEA model to measure the efficiency of banking with the governance, innovation and operations)
相關論文
★ 從生態共生觀點發展組織合作模式★ 影響產業垂直分工因素之探討
★ 發展台籍專業管家的人力派遣模式★ 影響軍事機關審計品質之關鍵性因素及其相對效率衡量
★ 台灣光碟片設備供應商競爭策略分析★ 國防科技研發機構組織向心力之研究
★ 衡量半導體零組件通路商之相對經營績效★ 衡量半導體晶圓代工廠商生產單位之營運績效
★ 商業銀行營運型態與組織調整對分行營運效率的影響★ 發展行動條碼為基礎的隨傳隨用視訊平台之應用
★ 飛機引擎定子零件維修之訂價調整方式★ 國際化、創新活動與公司績效:台灣上市公司董事會結構論析
★ 探討網際網路事件達成關鍵多數之影響因素★ 生態循環農業產銷策略個案研究
★ 探討以政策規範高耗能產業參與再生能源開發之綜效-以太陽光電發電系統為例★ 適地性服務(LBS)之顧客體驗整合性設計—以中華電信行動導遊為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 銀行在金融體系扮演重要角色,如何建構良好績效衡量方法評估銀行服務系統,為金融監理機關與銀行業管理階層重視議題。過往衡量銀行績效相關文獻,多係聚焦財務性指標,然而有效評比指標應隨環境動態調整。因此,本研究運用網絡資料包絡分析法之靜態及動態兩種模式,從近期金融監理關注之銀行誠信、永續金融及金融創新等層面,納入從業人員專業素質、內部控制品質、推動ESG 經營成果與金融專利數量等非財務性指標,以宏觀角度探討我國銀行業2017-2021年間經營績效。
研究結果顯示,將治理、創新與營運效率納入系統結構,發現銀行經營績效差異主要原因來自於治理和創新階段,且二者間呈現高度正相關;另股權結構差異性,亦會影響銀行業於治理與創新效率重視程度。此外,在長期經營績效方面,靜態DEA模型之連結(link)活動,顯著影響動態DEA模型之結轉(carryover)效應。本研究建議銀行業未來應重視誠信經營、永續金融與營造創新組織文化,以提升長期競爭優勢。研究結果可提供無效率銀行具體改進建議,並可作為主管機關評估金融監管措施之成效,具有實務貢獻。
摘要(英) Banks play a crucial role in the financial system. How to construct a robust set of performance measurements for an evaluation of the banking is a key issue for the management of financial institutions. Previous literature on the efficiency evaluation of the banking merely focuses on financial indicators. However, effective assessment indicators should change in accordance with the environmental dynamics. Therefore, this study measures the efficiency of Taiwanese banks through static and dynamic network data envelopment analysis (DEA) model from the perspective of banking integrity, Fintech, environment, social and governance (ESG) during 2017-2021.
The research results show that by dividing the internal structure of banking into governance, innovation and operational stages, it is found that the main reason for the difference in banking performance comes from governance and innovation efficiency, and there is a high positive correlation between each other. Differences in ownership structure will also affect the banking emphasis on governance and innovation efficiency. In addition, in terms of long-term performance, the link activity of the static DEA model significantly affects the carryover item of the dynamic DEA model. This study suggests that the banking should pay attention to integrity management, sustainable finance, and create innovative organizational culture in the future to enhance long-term competitive advantage. The research results can provide specific improvement suggestions for inefficient banks, and can be used as Financial Supervisory Commission (FSC) to evaluate the effectiveness of financial supervision measures, which has practical contributions.
關鍵字(中) ★ 網絡資料包絡分析
★ 銀行治理
★ 金融創新
★ 非意欲產出
★ 延續效果
關鍵字(英) ★ Network Data Envelopment Analysis (DEA)
★ Bank governance
★ Financial Innovation
★ Undesirable output
★ Carryover effect
論文目次 中文摘要 i
English Abstract ii
致謝 iii
Table of Contents iv
List of Figures v
List of Tables vi
Chapter 1 Introduction 1
1.1 Research background and motivation 1
1.2 Research objections 3
Chapter 2 Literature Review 5
2.1 Governance, innovation and operational development of the banking industry 5
2.2 Data envelopment analysis 6
2.2.1 Static data envelopment analysis 6
2.2.2 Dynamic data envelopment analysis 8
2.3 Literature on bank efficiency assessment 9
Chapter 3 Methodology 11
3.1 Research structure 11
3.1.1 Static data envelopment analysis 11
3.1.2 Dynamic data envelopment analysis 14
3.2 Network efficiency evaluation model 16
3.2.1 Static data envelopment analysis 16
3.2.2 Dynamic data envelopment analysis 18
3.3 Data and variable definitions 20
3.3.1 Static data envelopment analysis 20
3.3.2 Dynamic data envelopment analysis 21
Chapter 4 Empirical Results and Discussions 25
4.1 Results of the static model 25
4.1.1 Efficiency value analysis 25
4.1.2 Analysis of managerial decision-making matrix 29
4.1.3 The effect of the operational types on efficiencies 31
4.2 Results of the dynamic model 35
4.2.1 Efficiency value analysis 35
4.2.2 The relationship with the link of static DEA and the carryover of dynamic DEA 38
4.2.3 The effect of the operational types on efficiencies 40
Chapter 5 Conclusions 45
References 51
Appendix 57
參考文獻 Ababneh, M. (2015). The association between going concern audit opinion, corporate governance and real earnings management. Morgan State University.
Agoraki, M. E. K., Delis, M. D., & Pasiouras, F. (2011). Regulations, competition and bank risk-taking in transition countries. Journal of Financial Stability, 7(1), 38-48.
Amin, G. R., & Ibn Boamah, M. (2021). A two‐stage inverse data envelopment analysis approach for estimating potential merger gains in the US banking sector. Managerial and Decision Economics, 42, 1454-1465.
Avkiran, N. K. (2009). Opening the black box of efficiency analysis: An illustration with UAE banks. Omega, 37(4), 930-941.
Ayyagari, M., Demirgüç-Kunt, A., & Maksimovic, V. (2010). Formal versus informal finance: Evidence from China. The Review of Financial Studies, 23(8), 3048-3097.
Barth, J. R., Bertus, M. J., Artarska, V., Jiang, H. J., & Phumiwasana, T. (2007). A cross-country analysis of bank performance: The role of external governance. Corporate Governance in Banking: A Global Perspective, Edward Elgar Publishing, Northampton, MA, 151-153.
Bena, J., & Li, K. (2014). Corporate innovations and mergers and acquisitions. The Journal of Finance, 69(5), 1923-1960.
Bisogno, M., & Donatella, P. (2021). Earnings management in public-sector organizations: a structured literature review. Journal of Public Budgeting, Accounting & Financial Management, 34, 1-25.
Boyd, J. H., Chang, C., & Smith, B. D. (1998). Moral hazard under commercial and universal banking. Journal of money, credit and banking, 426-468.
Chang, D. S., Liu, W., & Yeh, L. T. (2013). Incorporating the learning effect into data envelopment analysis to measure MSW recycling performance. European Journal of Operational Research, 229(2), 496-504.
Chao, C. M., Yu, M. M., & Wu, H. N. (2015). An application of the dynamic network DEA model: The case of banks in Taiwan. Emerging Markets Finance and Trade, 51(sup1), S133-S151.
Chen, C., & Yan, H. (2011). Network DEA model for supply chain performance evaluation. European journal of operational research, 213(1), 147-155.
Chen, C. M., & Delmas, M. A. (2012). Measuring eco-inefficiency: a new frontier approach. Operations Research, 60(5), 1064-1079.
Chen, M. J., Chiu, Y. H., Jan, C., Chen, Y. C., & Liu, H. H. (2015). Efficiency and risk in commercial banks-hybrid DEA estimation. Global Economic Review, 44(3), 335-352.
Chen, Y. S., & Chang, K. C. (2010). The relationship between a firm′s patent quality and its market value-the case of US pharmaceutical industry. Technological forecasting and social change, 77(1), 20-33.
Chortareas, G. E., Girardone, C., & Ventouri, A. (2012). Bank supervision, regulation, and efficiency: Evidence from the European Union. Journal of Financial Stability, 8(4), 292-302.
Dyckhoff, H., & Allen, K. (2001). Measuring ecological efficiency with data envelopment analysis (DEA). European Journal of Operational Research, 132(2), 312-325.
Ebrahimnejad, A., Tavana, M., Lotfi, F. H., Shahverdi, R., & Yousefpour, M. (2014). A three-stage data envelopment analysis model with application to banking industry. Measurement, 49, 308-319.
Elliott, W. B., Jackson, K. E., Peecher, M. E., & White, B. J. (2014). The unintended effect of corporate social responsibility performance on investors′ estimates of fundamental value. The Accounting Review, 89(1), 275-302.
Fukuyama, H., & Weber, W. L. (2010). A slacks-based inefficiency measure for a two-stage system with bad outputs. Omega, 38(5), 398-409.
Godfrey, P. C., Merrill, C. B., & Hansen, J. M. (2009). The relationship between corporate social responsibility and shareholder value: An empirical test of the risk man-agement hypothesis. Strategic management journal, 30(4), 425-445.
Gordon, S., Tarafdar, M., Cook, R., Maksimoski, R., & Rogowitz, B.(2008). Improving the front end of innovation with information technology. Research-Technology Management, 51(3), 50-58.
Kamarudin, F., Sufian, F., & Nassir, A. M. (2016). Does country governance foster revenue efficiency of Islamic and conventional banks in GCC countries? EuroMed Journal of Business, 11, 181-211.
Kao, C.(2016). Efficiency decomposition and aggregation in network data envelopment analysis. European Journal of Operational Research, 255(3), 778-786.
Ke, T. Y., Li, Y., & Chiu, Y. H. (2013). Analyzing for profit efficiency of banks withundesirable output. African Journal of Business Management, 5(20), 8141-8149.
Korhonen, P. J., & Luptacik, M. (2004). Eco-efficiency analysis of power plants: An extension of data envelopment analysis. European journal of operational research, 154(2), 437-446.
Laeven, L., & Levine, R. (2009). Bank governance, regulation and risk taking. Journal of financial economics, 93(2), 259-275.
Li, Y., Chiu, Y. H., Cen, H., & Lin, T. Y. (2019). The operating efficiency of financial holding and nonfinancial holding banks—Epsilou-based measure metafrontier data envelopment analysis model. Managerial and Decision Economics, 40(5), 488-499.
Lin, T. Y., & Chiu, S. H. (2013). Using independent component analysis and network DEA to improve bank performance evaluation. Economic Modelling, 32, 608-616.
Liu, H. H., Huang, J. J., & Chiu, Y. H. (2020). Integration of network data envelopment analysis and decision-making trial and evaluation laboratory for the performance evaluation of the financial holding companies in Taiwan. Managerial and Decision Economics, 41(1), 64-78.
Liu, J. S., Lu, L. Y., Lu, W. M., & Lin, B. J. (2013). Data envelopment analysis 1978–2010: A citation-based literature survey. Omega, 41(1), 3-15.
Losiewicz-Dniestrzanska, E. (2015). Monitoring of compliance risk in the bank. Procedia Economics and Finance, 26, 800-805.
Lu, W. M., Wang, W. K., Tung, W. T., & Lin, F. (2010). Capability and efficiency of intellectual capital: The case of fabless companies in Taiwan. Expert Systems with Applications, 37(1), 546-555.
Mahlberg, B., & Sahoo, B. K. (2011). Radial and non-radial decompositions of Luenberger productivity indicator with an illustrative application. International Journal of Production Economics, 131(2), 721-726.
Martin, E., Bachiller, A., & Bachiller, P. (2018). The Restructuring of the Spanish banking system: analysis of the efficiency of financial entities. Management Decision, 56, 474-487.
Matthews, K. (2013). Risk management and managerial efficiency in Chinese banks: A network DEA framework. Omega, 41(2), 207-215.
Mirhedayatian, S. M., Azadi, M., & Saen, R. F. (2014). A novel network data envelopment analysis model for evaluating green supply chain management. International Journal of Production Economics, 147, 544-554.
Mishra, S., & Modi, S. B. (2013). Positive and negative corporate social responsibility, financial leverage, and idiosyncratic risk. Journal of business ethics, 117(2), 431-448.
O’Connor, M., & Rafferty, M. (2012). Corporate governance and innovation. Journal of financial and quantitative analysis, 47(2), 397-413.
Podinovski, V. V., & Kuosmanen, T. (2011). Modelling weak disposability in data envelopment analysis under relaxed convexity assumptions. European Journal of Operational Research, 211(3), 577-585.
Ramchander, S., Schwebach, R. G., & Staking, K. I. M. (2012). The informational relevance of corporate social responsibility: Evidence from DS400 index reconstitutions. Strategic Management Journal, 33(3), 303–314.
Sarkis, J., & Cordeiro, J. J. (2001). An empirical evaluation of environmental efficiencies and firm performance: pollution prevention versus end-of-pipe practice. European Journal of Operational Research, 135(1), 102-113.
Seiford, L. M., & Zhu, J. (1999). Profitability and marketability of the top 55 US commercial banks. Management science, 45(9), 1270-1288.
Sharma, S., & Thomas, V. (2008). Inter-country R&D efficiency analysis: An application of data envelopment analysis. Scientometrics, 76(3), 483-501.
Sherman, H. D., & Gold, F. (1985). Bank branch operating efficiency: Evaluation with data envelopment analysis. Journal of banking & finance, 9(2), 297-315.
Stewart, T. A. (2007). The wealth of knowledge: Intellectual capital and the twenty-first century organization. Currency.
Stoica, O., Mehdian, S., & Sargu, A. (2015). The impact of internet banking on the performance of Romanian banks:DEA and PCA approach. Procedia Economics and Finance, 20, 610-622.
Tochkov, K., & Nenovsky, N. (2011). Institutional reforms, EU accession, and bank efficiency in transition economies: Evidence from Bulgaria. Emerging Markets Finance and Trade, 47(1), 113-129.
Tone, K., & Tsutsui, M. (2009). Network DEA: A slacks-based measure approach. European journal of operational research, 197(1), 243-252.
Tone, K., & Tsutsui, M. (2014). Dynamic DEA with network structure: A slacks-based measure approach. Omega, 42(1), 124-131.
Wu, M. T. (2015). The impact of transformation on economic efficiency–a case study of financial holding companies in Taiwan. Journal of the Asia Pacific Economy, 20(3), 465-488.
Yang, C., & Liu, H. M. (2012). Managerial efficiency in Taiwan bank branches: A network DEA. Economic Modelling, 29(2), 450-461.
Yang, C. C. (2014). An enhanced DEA model for decomposition of technical efficiency in banking. Annals of Operations Research, 214(1), 167-185.
Yang, F. C. (2016). Efficiency decomposition in dealers from the perspectives of demand forecasting, sales force, and inventory control: a case study. Production Planning & Control, 27(16), 1334-1343.
Yeh, L. T., Chang D. S., & Li H. M. (2022). Developing a network data envelopment analysis model to measure the efficiency of banking with the governance, innovation, and operations. Managerial and Decision Economics. 2022, 1-12. (Acceptance date: 2022/1/23)
Yu, M. M. (2010). Assessment of airport performance using the SBM-NDEA model. Omega, 38(6), 440-452.
Zhou, P., Ang, B. W., & Poh, K. L. (2008). A survey of data envelopment analysis in energy and environmental studies. European journal of operational research, 189(1), 1-18.
Zhu, J. (2000). Multi-factor performance measure model with an application to Fortune 500 companies. European Journal of Operational Research, 123(1), 105-124.
指導教授 張東生(Dong-Shang Chang) 審核日期 2022-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明