參考文獻 |
[1] Bae, S. Y.; Mahmood, J.; Jeon, I. Y.; Baek, J. B., Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction. Nanoscale Horiz. 2020, 5 (1), 43-56.
[2] Zou, X.; Zhang, Y., Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44 (15), 5148-5180.
[3] Dang, D.; Zhang, L.; Zeng, X.; Tian, X.; Qu, C.; Nan, H.; Shu, T.; Hou, S.; Yang, L.; Zeng, J., In situ construction of Ir@Pt/C nanoparticles in the cathode layer of membrane electrode assemblies with ultra-low Pt loading and high Pt exposure. J. Power Sources 2017, 355, 83-89.
[4] Kweon, D. H.; Okyay, M. S.; Kim, S. J.; Jeon, J. P.; Noh, H. J.; Park, N.; Mahmood, J.; Baek, J. B., Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. Nat. Commun. 2020, 11 (1), 1-10.
[5] Roger, I.; Shipman, M. A.; Symes, M. D., Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1 (1), 1-13.
[6] Prabhu, P.; Jose, V.; Lee, J. M., Design strategies for development of TMD-based heterostructures in electrochemical energy systems. Matter 2020, 2 (3), 526-553.
[7] Liu, Y.; Li, X.; Zhang, Q.; Li, W.; Xie, Y.; Liu, H.; Shang, L.; Liu, Z.; Chen, Z.; Gu, L., A general route to prepare low‐ruthenium‐content bimetallic electrocatalysts for pH‐universal hydrogen evolution reaction by using carbon quantum dots. Angew. Chem. Int. Ed. 2020, 59 (4), 1718-1726.
[8] Xu, Y.; Wang, C.; Huang, Y.; Fu, J., Recent advances in electrocatalysts for neutral and large-current-density water electrolysis. Nano Energy 2021, 80, 105545.
[9] Wang, S.; Lu, A.; Zhong, C. J., Hydrogen production from water electrolysis: role of catalysts. Nano Converg. 2021, 8 (1), 1-23.
[10] Chen, Z.; Qing, H.; Zhou, K.; Sun, D.; Wu, R., Metal-organic framework-derived nanocomposites for electrocatalytic hydrogen evolution reaction. Prog. Mater. Sci. 2020, 108, 100618.
[11] Yang, Y.; Yu, Y.; Li, J.; Chen, Q.; Du, Y.; Rao, P.; Li, R.; Jia, C.; Kang, Z.; Deng, P., Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nano-Micro Lett. 2021, 13 (1), 1-20.
[12] Yu, J.; He, Q.; Yang, G.; Zhou, W.; Shao, Z.; Ni, M., Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catal. 2019, 9 (11), 9973-10011.
[13] Zhang, S.; Zhang, X.; Rui, Y.; Wang, R.; Li, X., Recent advances in non-precious metal electrocatalysts for pH-universal hydrogen evolution reaction. Green Energy Environ. 2021, 6 (4), 458-478.
[14] Higgins, S., Regarding ruthenium. Nat. Chem. 2010, 2 (12), 1100-1100.
[15] Karlberg, G., Adsorption trends for water, hydroxyl, oxygen, and hydrogen on transition-metal and platinum-skin surfaces. Phys. Rev. B 2006, 74 (15), 153414.
[16] Zhao, Y.; Wang, X.; Cheng, G.; Luo, W., Phosphorus-induced activation of ruthenium for boosting hydrogen oxidation and evolution electrocatalysis. ACS Catal. 2020, 10 (20), 11751-11757.
[17] Ye, S.; Luo, F.; Xu, T.; Zhang, P.; Shi, H.; Qin, S.; Wu, J.; He, C.; Ouyang, X.; Zhang, Q., Boosting the alkaline hydrogen evolution of Ru nanoclusters anchored on B/N–doped graphene by accelerating water dissociation. Nano Energy 2020, 68, 104301.
[18] Zheng, Y.; Jiao, Y.; Zhu, Y.; Li, L. H.; Han, Y.; Chen, Y.; Jaroniec, M.; Qiao, S. Z., High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J. Am. Chem. Soc. 2016, 138 (49), 16174-16181.
[19] Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B., An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 12 (5), 441-446.
[20] Tu, K.; Tranca, D.; Rodríguez‐Hernández, F.; Jiang, K.; Huang, S.; Zheng, Q.; Chen, M. X.; Lu, C.; Su, Y.; Chen, Z., A Novel Heterostructure Based on RuMo Nanoalloys and N‐doped Carbon as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Adv. Mater. 2020, 32 (46), 2005433.
[21] Su, J.; Yang, Y.; Xia, G.; Chen, J.; Jiang, P.; Chen, Q., Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat. Commun. 2017, 8 (1), 1-12.
[22] Cao, D.; Wang, J.; Xu, H.; Cheng, D., Growth of highly active amorphous RuCu nanosheets on Cu nanotubes for the hydrogen evolution reaction in wide pH values. Small 2020, 16 (37), 2000924.
[23] Rahaman, M.; Dutta, A.; Broekmann, P., Size‐Dependent Activity of Palladium Nanoparticles: Efficient Conversion of CO2 into Formate at Low Overpotentials. ChemSusChem 2017, 10 (8), 1733-1741.
[24] Saji, P.; Ganguli, A. K.; Bhat, M. A.; Ingole, P. P., Probing the Crystal Structure, Composition‐Dependent Absolute Energy Levels, and Electrocatalytic Properties of Silver Indium Sulfide Nanostructures. ChemPhysChem 2016, 17 (8), 1195-1203.
[25] Jiang, W. J.; Niu, S.; Tang, T.; Zhang, Q. H.; Liu, X. Z.; Zhang, Y.; Chen, Y. Y.; Li, J. H.; Gu, L.; Wan, L. J., Crystallinity‐Modulated Electrocatalytic Activity of a Nickel(II) Borate Thin Layer on Ni3B for Efficient Water Oxidation. Angew. Chem. Int. Ed. 2017, 56 (23), 6572-6577.
[26] Li, Y.; Zhang, L. A.; Qin, Y.; Chu, F.; Kong, Y.; Tao, Y.; Li, Y.; Bu, Y.; Ding, D.; Liu, M., Crystallinity dependence of ruthenium nanocatalyst toward hydrogen evolution reaction. ACS Catal. 2018, 8 (7), 5714-5720.
[27] Chu, S.; Majumdar, A., Opportunities and challenges for a sustainable energy future. Nature 2012, 488 (7411), 294-303.
[28] Zhang, J.; Wang, T.; Liu, P.; Liao, Z.; Liu, S.; Zhuang, X.; Chen, M.; Zschech, E.; Feng, X., Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8 (1), 1-8.
[29] Wang, P.; Jiang, K.; Wang, G.; Yao, J.; Huang, X., Phase and interface engineering of platinum–nickel nanowires for efficient electrochemical hydrogen evolution. Angew. Chem. Int. Ed. 2016, 128 (41), 13051-13055.
[30] Li, W.; Liu, Y.; Wu, M.; Feng, X.; Redfern, S. A.; Shang, Y.; Yong, X.; Feng, T.; Wu, K.; Liu, Z., Carbon‐quantum‐dots‐loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media. Adv. Mater. 2018, 30 (31), 1800676.
[31] Mao, J.; He, C. T.; Pei, J.; Chen, W.; He, D.; He, Y.; Zhuang, Z.; Chen, C.; Peng, Q.; Wang, D., Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. Nat. Commun. 2018, 9 (1), 1-8.
[32] Lu, Q.; Hutchings, G. S.; Yu, W.; Zhou, Y.; Forest, R. V.; Tao, R.; Rosen, J.; Yonemoto, B. T.; Cao, Z.; Zheng, H., Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution. Nat. Commun. 2015, 6 (1), 1-8.
[33] Chen, C. H.; Wu, D.; Li, Z.; Zhang, R.; Kuai, C. G.; Zhao, X. R.; Dong, C. K.; Qiao, S. Z.; Liu, H.; Du, X. W., Ruthenium‐based single‐atom alloy with high electrocatalytic activity for hydrogen evolution. Adv. Energy Mater. 2019, 9 (20), 1803913.
[34] Wu, Q.; Luo, M.; Han, J.; Peng, W.; Zhao, Y.; Chen, D.; Peng, M.; Liu, J.; De Groot, F. M.; Tan, Y., Identifying electrocatalytic sites of the nanoporous copper–ruthenium alloy for hydrogen evolution reaction in alkaline electrolyte. ACS Energy Lett. 2019, 5 (1), 192-199.
[35] Lin, Y.; Tian, Z.; Zhang, L.; Ma, J.; Jiang, Z.; Deibert, B. J.; Ge, R.; Chen, L., Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nat. Commun. 2019, 10 (1), 1-13.
[36] Schröder, F.; Esken, D.; Cokoja, M.; Van Den Berg, M. W.; Lebedev, O. I.; Van Tendeloo, G.; Walaszek, B.; Buntkowsky, G.; Limbach, H. H.; Chaudret, B., Ruthenium nanoparticles inside porous [Zn4O(bdc)3] by hydrogenolysis of adsorbed [Ru(cod)(cot)]: a solid-state reference system for surfactant-stabilized ruthenium colloids. J. Am. Chem. Soc. 2008, 130 (19), 6119-6130.
[37] Arčon, I.; Benčan, A.; Kodre, A.; Kosec, M., X‐ray absorption spectroscopy analysis of Ru in La2RuO5. X-Ray Spectrom. 2007, 36 (5), 301-304.
[38] Wong, J.; Lytle, F.; Messmer, R.; Maylotte, D., K-edge absorption spectra of selected vanadium compounds. Phys. Rev. B 1984, 30 (10), 5596.
[39] Adeniyi, A. A.; Ajibade, P. A., Exploring the ruthenium-ligands bond and their relative properties at different computational methods. J. Chem. 2016, 2016.
[40] Su, X.; Jiang, Z.; Zhou, J.; Liu, H.; Zhou, D.; Shang, H.; Ni, X.; Peng, Z.; Yang, F.; Chen, W., Complementary Operando Spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol. Nat. Commun. 2022, 13 (1), 1-11.
[41] Eilert, A.; Roberts, F. S.; Friebel, D.; Nilsson, A., Formation of copper catalysts for CO2 reduction with high ethylene/methane product ratio investigated with in situ X-ray absorption spectroscopy. J. Phys. Chem. Lett. 2016, 7 (8), 1466-1470.
[42] Michell, D.; Rand, D.; Woods, R., A study of ruthenium electrodes by cyclic voltammetry and X-ray emission spectroscopy. J. Electroanal. Chem. Interf. Electrochem. 1978, 89 (1), 11-27.
[43] Cao, D.; Wieckowski, A.; Inukai, J.; Alonso-Vante, N., Oxygen reduction reaction on ruthenium and rhodium nanoparticles modified with selenium and sulfur. J. Electrochem. Soc. 2006, 153 (5), A869.
[44] Prakash, J.; Joachin, H., Electrocatalytic activity of ruthenium for oxygen reduction in alkaline solution. Electrochim. Acta 2000, 45 (14), 2289-2296.
[45] Giri, S. D.; Sarkar, A., Electrochemical study of bulk and monolayer copper in alkaline solution. J. Electrochem. Soc. 2016, 163 (3), H252.
[46] Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K., Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5 (1), 1-21.
[47] Liu, X.; He, J.; Zhao, S.; Liu, Y.; Zhao, Z.; Luo, J.; Hu, G.; Sun, X.; Ding, Y., Self-powered H2 production with bifunctional hydrazine as sole consumable. Nat. Commun. 2018, 9 (1), 1-10.
[48] Xiao, P.; Sk, M. A.; Thia, L.; Ge, X.; Lim, R. J.; Wang, J. Y.; Lim, K. H.; Wang, X., Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci 2014, 7 (8), 2624-2629.
[49] Yao, Q.; Huang, B.; Zhang, N.; Sun, M.; Shao, Q.; Huang, X., Channel‐rich RuCu nanosheets for pH‐universal overall water splitting electrocatalysis. Angew. Chem. Int. Ed. 2019, 131 (39), 14121-14126.
[50] Lu, B.; Guo, L.; Wu, F.; Peng, Y.; Lu, J. E.; Smart, T. J.; Wang, N.; Finfrock, Y. Z.; Morris, D.; Zhang, P., Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat. Commun. 2019, 10 (1), 1-11.
[51] Yu, J.; Guo, Y.; She, S.; Miao, S.; Ni, M.; Zhou, W.; Liu, M.; Shao, Z., Bigger is surprisingly better: agglomerates of larger RuP nanoparticles outperform benchmark Pt nanocatalysts for the hydrogen evolution reaction. Adv. Mater. 2018, 30 (39), 1800047.
[52] Li, F.; Han, G. F.; Noh, H. J.; Ahmad, I.; Jeon, I. Y.; Baek, J. B., Mechanochemically assisted synthesis of a Ru catalyst for hydrogen evolution with performance superior to Pt in both acidic and alkaline media. Adv. Mater. 2018, 30 (44), 1803676.
[53] Liu, T.; Feng, B.; Wu, X.; Niu, Y.; Hu, W.; Li, C. M., Ru2P nanoparticle decorated P/N-doped carbon nanofibers on carbon cloth as a robust hierarchical electrocatalyst with platinum-comparable activity toward hydrogen evolution. ACS Appl. Energy Mater. 2018, 1 (7), 3143-3150.
[54] Xu, Y.; Li, Y.; Yin, S.; Yu, H.; Xue, H.; Li, X.; Wang, H.; Wang, L., Ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles for enhanced electrocatalytic hydrogen evolution. Nanotechnology 2018, 29 (22), 225403.
[55] Gao, K.; Wang, Y.; Wang, Z.; Zhu, Z.; Wang, J.; Luo, Z.; Zhang, C.; Huang, X.; Zhang, H.; Huang, W., Ru nanodendrites composed of ultrathin fcc/hcp nanoblades for the hydrogen evolution reaction in alkaline solutions. Chem. Commun. 2018, 54 (36), 4613-4616.
[56] Ding, R.; Chen, Q.; Luo, Q.; Zhou, L.; Wang, Y.; Zhang, Y.; Fan, G., Salt template-assisted in situ construction of Ru nanoclusters and porous carbon: excellent catalysts toward hydrogen evolution, ammonia-borane hydrolysis, and 4-nitrophenol reduction. Green Chem. 2020, 22 (3), 835-842.
[57] Liu, T.; Wang, S.; Zhang, Q.; Chen, L.; Hu, W.; Li, C. M., Ultrasmall Ru2P nanoparticles on graphene: a highly efficient hydrogen evolution reaction electrocatalyst in both acidic and alkaline media. Chem. Commun. 2018, 54 (27), 3343-3346.
[58] Cao, D.; Cheng, D., One-pot synthesis of copper–nickel sulfide nanowires for overall water splitting in alkaline media. Chem. Commun. 2019, 55 (56), 8154-8157.
[59] McKone, J. R.; Sadtler, B. F.; Werlang, C. A.; Lewis, N. S.; Gray, H. B., Ni–Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal. 2013, 3 (2), 166-169.
[60] Kim, J.; Kim, H. J.; Ruqia, B.; Kim, M. J.; Jang, Y. J.; Jo, T. H.; Baik, H.; Oh, H. S.; Chung, H. S.; Baek, K., Crystal Phase Transition Creates a Highly Active and Stable RuCX Nanosurface for Hydrogen Evolution Reaction in Alkaline Media. Adv. Mater. 2021, 33 (48), 2105248.
[61] Yin, J.; Fan, Q.; Li, Y.; Cheng, F.; Zhou, P.; Xi, P.; Sun, S., Ni–C–N nanosheets as catalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2016, 138 (44), 14546-14549.
[62] Cao, D.; Wang, J.; Xu, H.; Cheng, D., Construction of Dual‐Site Atomically Dispersed Electrocatalysts with Ru‐C5 Single Atoms and Ru‐O4 Nanoclusters for Accelerated Alkali Hydrogen Evolution. Small 2021, 17 (31), 2101163.
[63] Xing, L.; Gao, H.; Hai, G.; Tao, Z.; Zhao, J.; Jia, D.; Chen, X.; Han, M.; Hong, S.; Zheng, L., Atomically dispersed ruthenium sites on whisker-like secondary microstructure of porous carbon host toward highly efficient hydrogen evolution. J. Mater. Chem. 2020, 8 (6), 3203-3210.
[64] Ma, J. H.; Feng, Y. Y.; Yu, J.; Zhao, D.; Wang, A. J.; Xu, B. Q., Promotion by hydrous ruthenium oxide of platinum for methanol electro-oxidation. J. Catal. 2010, 275 (1), 34-44.
[65] Velázquez-Palenzuela, A.; Brillas, E.; Arias, C.; Centellas, F.; Garrido, J. A.; Rodríguez, R. M.; Cabot, P. L., Carbon monoxide, methanol and ethanol electro-oxidation on Ru-decorated carbon-supported Pt nanoparticles prepared by spontaneous deposition. J. Power Sources 2013, 225, 163-171.
[66] Zhao, T.; Wang, G.; Gong, M.; Xiao, D.; Chen, Y.; Shen, T.; Lu, Y.; Zhang, J.; Xin, H.; Li, Q., Self-optimized ligand effect in L12-PtPdFe intermetallic for efficient and stable alkaline hydrogen oxidation reaction. ACS Catal. 2020, 10 (24), 15207-15216.
[67] Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S. Z., The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angew. Chem. Int. Ed. 2018, 57 (26), 7568-7579.
[68] Hong, Y.; Choi, C. H.; Choi, S. I., Catalytic Surface Specificity of Ni (OH)2‐Decorated Pt Nanocubes for the Hydrogen Evolution Reaction in an Alkaline Electrolyte. ChemSusChem 2019, 12 (17), 4021-4028.
[69] Okamoto, Y.; Kubota, T.; Gotoh, H.; Ohto, Y.; Aritani, H.; Tanaka, T.; Yoshida, S., XAFS study of zirconia-supported copper catalysts for the NO–CO reaction: Deactivation, rejuvenation and stabilization of Cu species. J. Chem. Soc., Faraday Trans. 1998, 94 (24), 3743-3752.
[70] Weng, Z.; Wu, Y.; Wang, M.; Jiang, J.; Yang, K.; Huo, S.; Wang, X. F.; Ma, Q.; Brudvig, G. W.; Batista, V. S., Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9 (1), 1-9.
[71] Li, G.; Jang, H.; Liu, S.; Li, Z.; Kim, M. G.; Qin, Q.; Liu, X.; Cho, J., The synergistic effect of Hf-O-Ru bonds and oxygen vacancies in Ru/HfO2 for enhanced hydrogen evolution. Nat. Commun. 2022, 13 (1), 1-10. |