參考文獻 |
[1] A.-L. Barabási and H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, New York, 1995).
[2] T. Bohr, M. H. Jensen, G. Paladin, and A. Vulpiani, Dynamical Systems Approach to Turbulence (Cambridge University Press, Cambridge, UK, 1998).
[3] S. He, G. L. M. K. S. Kahanda, and P.-Z. Wong, Roughness of Wetting Fluid Invasion Fronts in Porous Media, Phys. Rev. Lett. 69, 3731 (1992).
[4] J. Zhang, Y.-C. Zhang, P. Alstrøm, and M. T. Levinsen, Modeling forest fire by a paper-burning experiment, a realization of the interface growth mechanism, Physica A 189, 383 (1992).
[5] M. Rubin-Zuzic, G. E. Morfill, A. V. Ivlev, R. Pompl, B. A. Klumov, W. Bunk, H. M. Thomas, H. Rothermel, O. Havnes, and A. Fouquét, Kinetic development of crystallization fronts in complex plasmas, Nat. Phys. 2, 181 (2006).
[6] W. Wang, H. W. Hu, and L. I, Surface-Induced Layering of Quenched 3D Dusty Plasma Liquids: Micromotion and Structural Rearrangement, Phys. Rev. Lett. 124, 165001 (2020).
[7] T. A. Witten, Jr. and L. M. Sander, Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon, Phys. Rev. Lett. 47, 1400 (1981).
[8] A. E. Patteson, A. Gopinath, and P. E. Arratia, The propagation of active-passive interfaces in bacterial swarms, Nat. Commun. 9, 5373 (2018).
[9] D. H. Rothman, Deformation, Growth, and Order in Sheared Spinodal Decomposition, Phys. Rev. Lett. 65, 3305 (1990).
[10] H. Tanaka, Double Phase Separation in a Confined, Symmetric Binary Mixture: Interface Quench Effect Unique to Bicontinuous Phase Separation, Phys. Rev. Lett. 72, 3690 (1994).
[11] D. A. Beysens, G. Forgacs, and J. A. Glazier, Cell sorting is analogous to phase ordering in fluids, Proc. Natl. Acad. Sci. USA 97, 9467 (2000).
[12] E. Méhes, E. Mones, V. Németh, and T. Vicsek, Collective motion of cells mediates segregation and pattern formation in co-cultures, PLoS One 7, e31711 (2012).
[13] C. Chatelain, T. Balois, P. Ciarletta, and M. Ben Amar, Emergence of microstructural patterns in skin cancer: A phase separation analysis in a binary mixture, New J. Phys. 13, 115013 (2011).
[14] E. Mones, A. Czirók, and T. Vicsek, Anomalous segregation dynamics of self-propelled particles, New J. Phys. 17, 063013 (2015).
[15] C. P. Beatrici, R. M. C. de Almeida, and L. G. Brunnet, Mean-cluster approach indicates cell sorting time scales are determined by collective dynamics, Phys. Rev. E 95, 032402 (2017).
[16] A. J. Kabla, Collective cell migration: leadership, invasion and segregation, J. R. Soc. Interface 9, 3268 (2012).
[17] J. M. Belmonte, G. L. Thomas, L. G. Brunnet, R. M. C. de Almeida, and H. Chaté, Self-Propelled Particle Model for Cell-Sorting Phenomena, Phys. Rev. Lett. 100, 248702 (2008).
[18] C. Strandkvist, J. Juul, B. Baum, A. Kabla, and T. Duke, A kinetic mechanism for cell sorting based on local variations in cell motility, Interface Focus 4, 20140013 (2014).
[19] P. Friedl and D. Gilmour, Collective cell migration in morphogenesis, regeneration and cancer, Nat. Rev. Mol. Cell Biol. 10, 445 (2009).
[20] A. Labernadie et al., A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion, Nat. Cell Bio. 19, 224 (2017).
[21] D. T. Tambe et al., Collective cell guidance by cooperative intercellular forces, Nat. Mater. 10, 469 (2011).
[22] A. Haeger, M. Krause, K. Wolf, and P. Friedl, Cell jamming: Collective invasion of mesenchymal tumor cells imposed by tissue confinement, Biochim. Biophys. Acta 1840, 2386 (2014).
[23] O. Ilina and P. Friedl, Mechanisms of collective cell migration at a glance, J. Cell Sci. 122, 3203 (2009).
[24] H. Y. Chen, Y. T. Hsiao, S. C. Liu, T. Hsu, W. Y. Woon, and L. I, Enhancing Cancer Cell Collective Motion and Speeding up Confluent Endothelial Dynamics through Cancer Cell Invasion and Aggregation, Phys. Rev. Lett. 121, 018101 (2018).
[25] T. E. Angelini, E. Hannezo, X. Trepat, M. Marquez, J. J. Fredberg, and D. A. Weitz, Glass-like dynamics of collective cell migration, Proc. Natl. Acad. Sci. USA 108, 4714 (2011).
[26] J. A. Park et al., Unjamming and cell shape in the asthmatic airway epithelium, Nat. Mater. 14, 1040 (2015).
[27] S. Garcia, E. Hannezo, J. Elgeti, J. F. Joanny, P. Silberzan, and N. S. Gov, Physics of active jamming during collective cellular motion in a monolayer, Proc. Natl. Acad. Sci. USA 112, 15314 (2015).
[28] A. Hayer, L. Shao, M. Chung, L.-M. Joubert, H. W. Yang, F.-C. Tsai, A. Bisaria, E. Betzig, and T. Meyer, Engulfed cadherin fingers are polarized junctional structures between collectively migrating endothelial cells, Nat. Cell Biol. 18, 1311 (2016).
[29] B. Li and S. X. Sun, Coherent motions in confluent cell monolayer sheets, Biophys. J. 107, 1532 (2014).
[30] G. Duclos, C. Erlenkamper, J. F. Joanny, and P. Silberzan, Topological defects in confined populations of spindle-shaped cells, Nat. Phys. 13, 58 (2017).
[31] A. Puliafito, L. Hufnagel, P. Neveu, S. Streichan, A. Sigal, D. K. Fygenson, and B. I. Shraniman, Collective and single cell behavior in epithelial contact inhibition, Proc. Natl. Acad. Sci. USA 109, 739 (2012).
[32] A. Szabó, R. Ünnep, E. Méhes, W. O. Twal, W. S. Argraves, Y. Cao, and A. Czirók, Collective cell motion in endothelial monolayers, Phys. Biol. 7, 046007 (2010).
[33] S. E. Leggett, Z. J. Neronha, D. Bhaskar, J. Y. Sim, T. M. Perdikari, and I. Y. Wong, Motility-limited aggregation of mammary epithelial cells into fractal-like clusters, Proc. Natl. Acad. Sci. USA 116, 17298 (2019).
[34] D. Bi, J. H. Lopez, J. M. Schwarz, and M. L. Manning, A density-independent rigidity transition in biological tissues, Nat. Phys. 11, 1074 (2015).
[35] W. K. Chang, C. Carmona-Fontaine, and J. B. Xavier, Tumour stromal interactions generate emergent persistence in collective cancer cell migration, Interface Focus 3, 20130017 (2013).
[36] J. W. Baish and R. K. Jain, Fractals and cancer, Persp. Cancer Res. 60, 3683 (2000).
[37] F. E. Lennon, G. C. Cianci, N. A. Cipriani, T. A. Hensing, H. J. Zhang, C.-T. Chen, S. D. Murgu, E. E. Vokes, M. W. Vannier, and R. Salgia, Lung cancer—a fractal viewpoint, Nat. Rev. Clin. Oncol. 12, 664 (2015).
[38] A. Chan and J. A. Tuszynski., Automatic prediction of tumour malignancy in breast cancer with fractal dimension, R. Soc. Open Sci. 3, 160558 (2016).
[39] C. Y. Liu, H. Y. Chen, and L. I, Scale-free aggregation and interface fluctuations of cancer clusters in cancer-endothelial cell mixtures: From the dilute state to confluent monolayer, Phys. Rev. Research 3, L032050 (2021).
[40] S. C. Liu, T. Hsu, Y. S. Chang, A. K. Chung, S. S. Jiang, C. N. OuYang, C. H. Yuh, C. Hsueh, Y. P. Liu, and N. M. Tsang, Cytoplasmic LIF reprograms invasive mode to enhance NPC dissemination through modulating YAP1-FAK/PXN signaling, Nat. Commun. 9, 5105 (2018).
[41] W. Thielicke and E. J. Stamhuis, http://PIVlab.blogspot.com.
[42] P. Bak, How Nature Works—The Science of Self-Organized Criticality (Oxford University Press, Oxford, UK, 1977); H. J. Jensen, Self-Organized Criticality (Cambridge University Press, New York, 1998). |