博碩士論文 108328006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:3.16.83.150
姓名 曾國豪(KUO-HAO TSENG)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 氟化石墨烯複合結構於鋰離子電池的人工固態電解質界面膜之研究
(The study of artificial solid electrolyte interface by using the fluorinated graphene composite structure in lithium-ion battery)
相關論文
★ 捲對捲乾轉印方法於製作高效能石墨烯透明導電膜之研究★ 利用氟素高分子摻雜於提升石墨烯導電膜的效能 與穩定性之研究
★ 以石墨烯混成陶瓷粉末於製作高導熱及高電阻之聚亞醯胺薄膜的研究★ 以奈米銅催化輔助控制多孔石墨烯之孔隙結構及其於超級電容之研究
★ 研究超潔淨石墨烯之場效電晶體 於提升基因感測器之效能★ 利用氟化自組裝膜輔助轉印石墨烯薄膜及其於場效電晶體特性之研究
★ 多孔石墨烯邊界態之氮改質於超級電容的效能研究★ 石墨烯場效應電晶體應用於DNA生醫感測晶片之元件整合和效能評估的研究
★ 添加氟化石墨烯於奈米高分子複合材料以增強防 腐性能★ 石墨烯功能性改質於鋰離子電池負極材料 之研究
★ 紫外光輻照於輔助轉印高品質石墨烯之研究★ 超高附著力之氟化石墨烯薄膜於固態磨潤之研究
★ 真空壓印於二維材料轉印製程之研究★ 氟化石墨烯複合結構在鋰金屬電池中的雙功能陽極之機制探討
★ 氟化石墨烯複合材料塗層於多功能披覆之研究★ 三維結構之微孔石墨烯於超級電容器之應用與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在移動設備和電動汽車和各種應用中都需要大量能源的今天,高容量和穩定性的儲能設備,鋰離子電池 (LIBs) 在幾十年來引起了研究人員的關注。但商業使用的負極材料石墨的理論容量相對較低,LIBs 的能量密度從 1990 年代(80 Wh/kg)到現在(250 Wh/kg)並沒有太大提高。為了解決上述問題,進行了許多研究,發現直接電鍍鋰的理論容量更高(>3800 mAh/g),因此鋰金屬電池(LMBs)成為新一代儲能設備的解決方案。然而,LMBs的研究一直存在枝晶生長會消耗鋰或穿透隔離膜,導致LMBs性能下降甚至導致電池失效的問題。為了解決這個問題,一種人工固態電解質中間相(ASEI)的有效策略被用作保護層,以增強和穩定陽極性能。然而,儘管已經對合成ASEI進行了多項研究,但製備具有高機械強度且穩定的ASEI,並且容易控制的沉積方法仍然具有挑戰性。
在這項研究中,通過使用電泳沉積法 (EPD) 沉積 FECG(氟化電化學剝離石墨烯)來製備新型 ASEI並研究其電化學特性。此外,在ASEI薄膜中添加了使用噴霧乾燥製作的FECG微米球,然後進行水熱氟化製程,通過提供結構支撐和石墨烯球所構成的LMBs的鋰離子傳輸隧道來增強機械強度和穩定性。本研究通過分析庫侖效率(CE)、過電壓電位、極化曲線等電化學測量,並觀察鋰沉積與脫附過程中ASEI結構的變化,並探討電池性能與ASEI厚度和結構之間的關聯性。本研究發現FECG片/球於2:1重量比的優化厚度為2μm。ASEI可以成功地提高穩定性並抑制LMBs中枝晶的生長。具有上述 ASEI 的 LMB 顯示出低成核過電位(57.3 mV),400次循環後CE穩定性達87.63%,以及在半電池中長達400小時的優異之極化性能。此外,還證明了全電池LMBs(NCM-622)在50次循環後具有高容量(>120 mAh/g)。該研究通過混入FECG球作為結構支撐並藉此額外增加鋰傳輸隧道來提升LMB的效能,為功能性之新穎ASEI材料提供了一種新策略。
摘要(英) Upon the request of high capacity and stable energy storage devices for various applications such as mobile devices and electric vehicles, lithium-ion batteries (LIBs) had captured researcher attention in these decades. However, the energy density of LIBs had not improved much since the 1990 s (80 Wh/kg) to the present (250 Wh/kg) due to the limitation of the relatively low theoretical capacity of graphite, the commercially used anode material. According to the mentioned issue, lithium-metal batteries (LMBs) had seemed like the solution and the new generation of energy storage devices because of the higher theoretical capacity of directly plating lithium (>3800 mAh/g). However, the research of LMBs had been suffered from the dendrite grow which would consume the lithium or penetrate the separator which made the performance of LMBs decline or even lead to the failure of batteries. To address this issue, an effective strategy of deposing an artificial solid electrolyte interphase (ASEI) had been purposed to act as a protecting layer to enhance and stable the anode performance. However, although several efforts have been investigated to synthesis ASEI, a well-controlled deposition method preparing a stable ASEI with high mechanical strength is still challenging and not yet purposed.

In this study, a novel ASEI was prepared by depositing a FECG (fluorinated electrochemically exfoliated graphene) layer with the electrophoretic deposition (EPD) method. Additionally, spray dry ECG balls followed by hydrothermal fluorination process were added in the ASEI film to enhance the mechanical strength and stability by providing structure supporting and extra lithium transport tunnels of LMBs. The effects between the batteries′ performance and both thickness and structure were investigated in this study by analyzing the electrochemical measurement such as coulomb effect (CE), overvoltage potential, polarization profile, and observing the change of the ASEI structure during the lithium stripping/plating. As a result, an optimized ASEI thickness of 2 μm with a FECG sheet/ball ratio of 2:1 (wt.) could successfully improve the stability and inhibit the growth of dendrite in LMBs. The LMBs with the mentioned ASEI showed a low nucleation overpotential (57.3 mV), high stability of CE up to 87.63% after 400 cycles, and a remarkable polarization performance for up to 400 hours in a half-cell. In addition, full-cell LMBs (NCM-622) with an excellent capacity for up to >120 mAh/g after 50 cycles was also demonstrated. This study provided a new strategy for improving the mechanical strength of ASEI by introducing FECG ball as a structure supporting and extra lithium transport tunnels realizing the potential of LMBs.
關鍵字(中) ★ 鋰金屬電池
★ 無黏著劑
★ 人工固態電解質介面
★ 氟化石墨烯
關鍵字(英) ★ Lithium metal battery
★ Binder-free
★ Artificial solid electrolyte interface
★ Fluorinated graphene
論文目次 學位論文授權書 II
學位論文延後公開申請書 III
指導教授推薦信 IV
口試委員審定書 V
摘要 VI
Abstract VII
誌謝 VIII
總目錄 IX
表目錄 XII
圖目錄 XIII
第一章 緒論 1
第二章 文獻回顧 4
2-1 電池介紹 4
2-1-1 鋰離子電池 4
2-1-2 無陽極鋰離子電池 7
2-1-3 人工固態電解質界面膜 10
2-2 石墨烯簡介 14
2-3 氟化石墨烯特性 17
2-4 高接著性無接著劑塗布方式 19
2-5 研究動機 21
第三章 實驗方法與分析 22
3-1 實驗藥品 22
3-2 材料特性鑑定儀器 22
3-2-1 掃描電子顯微鏡(Scanning Electron Microscope, SEM) 22
3-2-2穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 22
3-2-3 拉曼光譜儀(Raman Spectroscopy) 23
3-2-4 X射線光電子能譜儀(X-ray Photoelectron Spectroscope, XPS) 23
3-2-5 聚焦離子束(Focused Ion beam, FIB) 23
3-3 實驗製備流程 24
3-3-1 電化學剝離石墨烯之製備 24
3-3-2 利用噴霧乾燥法製備空心結構之石墨烯球 25
3-3-3 利用水熱法製備氟化石墨烯(空心球) 25
3-3-4 電泳沉積法製備人工固態電解質界面膜 25
3-4 試片名稱定義 26
3-5 電池組裝 26
3-5-1 半電池組裝 27
3-5-2 全電池組裝 27
3-6 電化學量測 27
第四章 結果與討論 28
4-1 石墨烯與石墨烯球表面形貌與結構分析 28
4-2 氟化石墨烯片層與球之材料分析 30
4-3 EPD沉積ASEI層之材料分析 31
4-4 討論ASEI厚度對於其性能之影響 32
4-4-1 不同電泳時間對於ASEI厚度之影響比較 32
4-4-2 不同厚度ASEI之電池穩定性之影響 34
4-4-3 不同厚度之ASEI充放電時對於其結構影響之比較 37
4-5 ASEI膜之結構對於LMB性能之探討 39
4-5-1 不同片球比例對於ASEI結構之影響 39
4-5-2 不同片球比例ASEI對於LMB之半電池特性之影響分析 41
4-5-3 不同片球比例ASEI膜對於充放電時LMB之結構變化影響 47
4-6 不同結構ASEI對於全電池性能表現之影響 52
第五章 結論 56
第六章 未來工作 57
第七章 參考文獻 58
參考文獻 1. Armand, M. and J.-M. Tarascon, "Building better batteries". nature, Vol. 451, no. 7179, pp. 652-657, 2008.
2. Shen, X., et al., "Beyond lithium ion batteries: higher energy density battery systems based on lithium metal anodes". Energy Storage Materials, Vol. 12, pp. 161-175, 2018.
3. Ismail, M., et al., "A survey on green mobile networking: From the perspectives of network operators and mobile users". IEEE Communications Surveys & Tutorials, Vol. 17, no. 3, pp. 1535-1556, 2014.
4. https://learnenergy.tw/index.php?inter=teachers&id=67&did=29.
5. https://www.taipower.com.tw/tc/index.aspx.
6. Etacheri, V., et al., "Challenges in the development of advanced Li-ion batteries: a review". Energy & Environmental Science, Vol. 4, no. 9, pp. 3243-3262, 2011.
7. Lu, L., et al., "A review on the key issues for lithium-ion battery management in electric vehicles". Journal of power sources, Vol. 226, pp. 272-288, 2013.
8. Winter, M. and R.J. Brodd, "What are batteries, fuel cells, and supercapacitors?". Chemical reviews, Vol. 104, no. 10, pp. 4245-4270, 2004.
9. Wu, F., J. Maier, and Y. Yu, "Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries". Chemical Society Reviews, Vol. 49, no. 5, pp. 1569-1614, 2020.
10. Cheng, X.B., et al., "Dendrite‐free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries". Advanced materials, Vol. 28, no. 15, pp. 2888-2895, 2016.
11. Ding, F., et al., "Dendrite-free lithium deposition via self-healing electrostatic shield mechanism". Journal of the American Chemical Society, Vol. 135, no. 11, pp. 4450-4456, 2013.
12. Cheng, X.-B., et al., "Nanodiamonds suppress the growth of lithium dendrites". Nature communications, Vol. 8, no. 1, pp. 1-9, 2017.
13. Goodenough, J.B. and Y. Kim, "Challenges for rechargeable Li batteries". Chemistry of materials, Vol. 22, no. 3, pp. 587-603, 2010.
14. Liu, B., J.-G. Zhang, and W. Xu, "Advancing lithium metal batteries". Joule, Vol. 2, no. 5, pp. 833-845, 2018.
15. Xu, R., et al., "Artificial interphases for highly stable lithium metal anode". Matter, Vol. 1, no. 2, pp. 317-344, 2019.
16. Wang, H., et al., "A binder-free high silicon content flexible anode for Li-ion batteries". Energy & Environmental Science, Vol. 13, no. 3, pp. 848-858, 2020.
17. Kim, J.M., et al., "Electrochemically exfoliated graphene as a novel microwave susceptor: the ultrafast microwave-assisted synthesis of carbon-coated silicon− graphene film as a lithium-ion battery anode". Nanoscale, Vol. 9, no. 40, pp. 15582-15590, 2017.
18. Tang, X., G. Wen, and Y. Song, "Stable silicon/3D porous N-doped graphene composite for lithium-ion battery anodes with self-assembly". Applied Surface Science, Vol. 436, pp. 398-404, 2018.
19. Zhang, Y., N. Du, and D. Yang, "Designing superior solid electrolyte interfaces on silicon anodes for high-performance lithium-ion batteries". Nanoscale, Vol. 11, no. 41, pp. 19086-19104, 2019.
20. Wei, C., et al., "Uniform Li deposition by regulating the initial nucleation barrier via a simple liquid-metal coating for a dendrite-free Li–metal anode". Journal of Materials Chemistry A, Vol. 7, no. 32, pp. 18861-18870, 2019.
21. Ye, L. and X. Li, "A dynamic stability design strategy for lithium metal solid state batteries". Nature, Vol. 593, no. 7858, pp. 218-222, 2021.
22. Liu, S., et al., "Crumpled graphene balls stabilized dendrite-free lithium metal anodes". Joule, Vol. 2, no. 1, pp. 184-193, 2018.
23. Cheng, X.-B., et al., "Toward safe lithium metal anode in rechargeable batteries: a review". Chemical reviews, Vol. 117, no. 15, pp. 10403-10473, 2017.
24. Zhang, R., et al., "Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite‐free lithium metal anodes". Angewandte Chemie, Vol. 129, no. 27, pp. 7872-7876, 2017.
25. Yun, Q., et al., "Chemical dealloying derived 3D porous current collector for Li metal anodes". Advanced Materials, Vol. 28, no. 32, pp. 6932-6939, 2016.
26. Yang, C., et al., "Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework". Proceedings of the National Academy of Sciences, Vol. 115, no. 15, pp. 3770-3775, 2018.
27. Kim, S., et al., "The Role of Interlayer Chemistry in Li‐Metal Growth through a Garnet‐Type Solid Electrolyte". Advanced Energy Materials, Vol. 10, no. 12, pp. 1903993, 2020.
28. Pande, V. and V. Viswanathan, "Computational screening of current collectors for enabling anode-free lithium metal batteries". ACS Energy Letters, Vol. 4, no. 12, pp. 2952-2959, 2019.
29. Li, C., et al., "Flexible artificial solid electrolyte interphase formed by 1, 3-dioxolane oxidation and polymerization for metallic lithium anodes". ACS applied materials & interfaces, Vol. 11, no. 2, pp. 2479-2489, 2018.
30. Xu, R., et al., "Artificial soft–rigid protective layer for dendrite‐free lithium metal anode". Advanced Functional Materials, Vol. 28, no. 8, pp. 1705838, 2018.
31. Shang, Y., et al., "Scalable Synthesis of LiF‐rich 3D Architected Li Metal Anode via Direct Lithium‐Fluoropolymer Pyrolysis to Enable Fast Li Cycling". Energy & Environmental Materials, Vol. 4, no. 2, pp. 213-221, 2021.
32. Xu, W., et al., "Lithium metal anodes for rechargeable batteries". Energy & Environmental Science, Vol. 7, no. 2, pp. 513-537, 2014.
33. Cheng, H., et al., "Trace fluorinated-carbon-nanotube-induced lithium dendrite elimination for high-performance lithium–oxygen cells". Nanoscale, Vol. 12, no. 5, pp. 3424-3434, 2020.
34. Xia, S., et al., "Highly Stable and Ultrahigh‐Rate Li Metal Anode Enabled by Fluorinated Carbon Fibers". Small, Vol. 17, no. 4, pp. 2006002, 2021.
35. Jiang, G., et al., "Robust Artificial Solid‐Electrolyte Interfaces with Biomimetic Ionic Channels for Dendrite‐Free Li Metal Anodes". Advanced Energy Materials, Vol. 11, no. 6, pp. 2003496, 2021.
36. Beyene, T.T., et al., "Concentrated dual-salt electrolyte to stabilize Li metal and increase cycle life of anode free Li-metal batteries". Journal of The Electrochemical Society, Vol. 166, no. 8, pp. A1501, 2019.
37. Wang, X., et al., "Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates". Nature Energy, Vol. 3, no. 3, pp. 227-235, 2018.
38. Liu, S., et al., "High interfacial-energy interphase promoting safe lithium metal batteries". Journal of the American Chemical Society, Vol. 142, no. 5, pp. 2438-2447, 2020.
39. Zhang, R., et al., "Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth". Advanced Materials, Vol. 28, no. 11, pp. 2155-2162, 2016.
40. Liu, W., et al., "Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement". Journal of the American Chemical Society, Vol. 138, no. 47, pp. 15443-15450, 2016.
41. Tu, Z., et al., "Stabilizing protic and aprotic liquid electrolytes at high-bandgap oxide interphases". Chemistry of Materials, Vol. 30, no. 16, pp. 5655-5662, 2018.
42. Bobnar, J., et al., "Fluorinated reduced graphene oxide as a protective layer on the metallic lithium for application in the high energy batteries". Scientific reports, Vol. 8, no. 1, pp. 1-10, 2018.
43. Cui, C., et al., "A highly reversible, dendrite‐free lithium metal anode enabled by a lithium‐fluoride‐enriched interphase". Advanced Materials, Vol. 32, no. 12, pp. 1906427, 2020.
44. Assegie, A.A., et al., "Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries". Nanoscale, Vol. 11, no. 6, pp. 2710-2720, 2019.
45. Assegie, A.A., et al., "Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery". Nanoscale, Vol. 10, no. 13, pp. 6125-6138, 2018.
46. Nilsson, V., et al., "Highly concentrated LiTFSI–EC electrolytes for lithium metal batteries". ACS Applied Energy Materials, Vol. 3, no. 1, pp. 200-207, 2019.
47. Wondimkun, Z.T., et al., "Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries". Journal of Power Sources, Vol. 450, pp. 227589, 2020.
48. Novoselov, K.S., et al., "Electric field effect in atomically thin carbon films". science, Vol. 306, no. 5696, pp. 666-669, 2004.
49. Bolotin, K.I., et al., "Ultrahigh electron mobility in suspended graphene". Solid state communications, Vol. 146, no. 9-10, pp. 351-355, 2008.
50. Lee, C., et al., "Measurement of the elastic properties and intrinsic strength of monolayer graphene". science, Vol. 321, no. 5887, pp. 385-388, 2008.
51. Pop, E., et al., "Thermal conductance of an individual single-wall carbon nanotube above room temperature". Nano letters, Vol. 6, no. 1, pp. 96-100, 2006.
52. Lin, Y., et al., "Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function". Energy & Environmental Science, Vol. 6, no. 1, pp. 108-115, 2013.
53. Zhu, Z., et al., "Thin film transistors based on two dimensional graphene and graphene/semiconductor heterojunctions". RSC advances, Vol. 7, no. 28, pp. 17387-17397, 2017.
54. Wang, X., L. Zhi, and K. Müllen, "Transparent, conductive graphene electrodes for dye-sensitized solar cells". Nano letters, Vol. 8, no. 1, pp. 323-327, 2008.
55. Eda, G., G. Fanchini, and M. Chhowalla, "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material". Nature nanotechnology, Vol. 3, no. 5, pp. 270-274, 2008.
56. Wang, H., et al., "Wrinkled graphene cages as hosts for high-capacity Li metal anodes shown by cryogenic electron microscopy". Nano letters, Vol. 19, no. 2, pp. 1326-1335, 2019.
57. Stankovich, S., et al., "Graphene-based composite materials". nature, Vol. 442, no. 7100, pp. 282-286, 2006.
58. Yao, Y., et al., "Mosaic rGO layers on lithium metal anodes for the effective mediation of lithium plating and stripping". Journal of Materials Chemistry A, Vol. 7, no. 19, pp. 12214-12224, 2019.
59. Liu, C., et al., "Advance on the dispersion treatment of graphene oxide and the graphene oxide modified cement-based materials". Nanotechnology Reviews, Vol. 10, no. 1, pp. 34-49, 2021.
60. Su, C.-Y., et al., "High-quality thin graphene films from fast electrochemical exfoliation". ACS nano, Vol. 5, no. 3, pp. 2332-2339, 2011.
61. Lu, Y., et al., "Stable lithium electrodeposition in salt-reinforced electrolytes". Journal of Power Sources, Vol. 279, pp. 413-418, 2015.
62. Sun, S., et al., "Facile ex situ formation of a LiF–polymer composite layer as an artificial SEI layer on Li metal by simple roll-press processing for carbonate electrolyte-based Li metal batteries". Journal of Materials Chemistry A, Vol. 8, no. 33, pp. 17229-17237, 2020.
63. Luo, Z., et al., "Ultrafast Li/Fluorinated Graphene Primary Batteries with High Energy Density and Power Density". ACS Applied Materials & Interfaces, Vol. 13, no. 16, pp. 18809-18820, 2021.
64. Cheng, H., et al., "Dendrite-Free Fluorinated Graphene/Lithium Anodes Enabling in Situ LiF Formation for High-Performance Lithium–Oxygen Cells". ACS applied materials & interfaces, Vol. 11, no. 43, pp. 39737-39745, 2019.
65. Rojaee, R. and R. Shahbazian-Yassar, "Two-dimensional materials to address the lithium battery challenges". ACS nano, Vol. 14, no. 3, pp. 2628-2658, 2020.
66. Sin, Y.-Y., et al., "Ultrastrong adhesion of fluorinated graphene on a substrate: In situ electrochemical conversion to ionic-covalent bonding at the interface". Carbon, Vol. 169, pp. 248-257, 2020.
67. "Anif Jamaluddin, "Graphene-Modified Electrode for Advanced Anode Materials in Lithium-Ion Batteries", 國立中央大學, 博士論文, 民國110年01月".
68. Samarakoon, D.K., et al., "Structural and electronic properties of fluorographene". Small, Vol. 7, no. 7, pp. 965-969, 2011.
69. Feng, W., et al., "Two‐dimensional fluorinated graphene: synthesis, structures, properties and applications". Advanced Science, Vol. 3, no. 7, pp. 1500413, 2016.
70. Fan, L., et al., "Regulating Li deposition at artificial solid electrolyte interphases". Journal of Materials Chemistry A, Vol. 5, no. 7, pp. 3483-3492, 2017.
71. Tian, S., et al., "Testing Method of Density and Porosity of Dense Ceramic Materials". Physical Testing and Chemical Analysis (Part A: Physical Testing), Vol. 8, 2011.
72. https://en.wikipedia.org/wiki/Graphite.
73. Liang, Z., et al., "Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating". Proceedings of the National Academy of Sciences, Vol. 113, no. 11, pp. 2862-2867, 2016.
74. Conradi, M., et al., "Mechanical and anticorrosion properties of nanosilica-filled epoxy-resin composite coatings". Applied Surface Science, Vol. 292, pp. 432-437, 2014.
75. Weng, C.-J., et al., "Advanced anticorrosive coatings prepared from the mimicked xanthosoma sagittifolium-leaf-like electroactive epoxy with synergistic effects of superhydrophobicity and redox catalytic capability". Chemistry of Materials, Vol. 23, no. 8, pp. 2075-2083, 2011.
76. Ding, J., et al., "Nafion-endowed graphene super-anticorrosion performance". ACS Sustainable Chemistry & Engineering, Vol. 8, no. 40, pp. 15344-15353, 2020.
77. Pei, A., et al., "Nanoscale nucleation and growth of electrodeposited lithium metal". Nano letters, Vol. 17, no. 2, pp. 1132-1139, 2017.
78. Lin, K., et al., "Dendrite-free lithium deposition enabled by a vertically aligned graphene pillar architecture". Carbon, Vol. 185, pp. 152-160, 2021.
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2021-12-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明