參考文獻 |
1. Ashcroft, N.W., Metallic Hydrogen: A High-Temperature Superconductor? Physical Review Letters, 1968. 21(26): p. 1748-1749.
2. Ashcroft, N.W., Hydrogen Dominant Metallic Alloys: High Temperature Superconductors? Physical Review Letters, 2004. 92(18): p. 187002.
3. Chen, X.-J., et al., Pressure-induced metallization of silane. Proceedings of the National Academy of Sciences, 2008. 105(1): p. 20.
4. Guillot, T., The interiors of giant planets: Models and outstanding questions. Annu. Rev. Earth Planet. Sci., 2005. 33: p. 493-530.
5. Helled, R., N. Nettelmann, and T. Guillot, Uranus and Neptune: Origin, Evolution and Internal Structure. Space Science Reviews, 2020. 216(3): p. 38.
6. Hazen, R., et al., Structure and compression of crystalline methane at high pressure and room temperature. Applied Physics Letters, 1980. 37(3): p. 288-289.
7. Maynard-Casely, H.E., et al., The distorted close-packed crystal structure of methane A. The Journal of Chemical Physics, 2010. 133(6): p. 064504.
8. Bini, R., et al., High pressure crystal phases of solid CH4 probed by Fourier transform infrared spectroscopy. The Journal of chemical physics, 1995. 103(4): p. 1353-1360.
9. Hirai, H., et al., Phase changes of solid methane under high pressure up to 86 GPa at room temperature. Chemical Physics Letters, 2008. 454(4-6): p. 212-217.
10. Maynard-Casely, H., et al., The crystal structure of methane B at 8 GPa—An α-Mn arrangement of molecules. The Journal of chemical physics, 2014. 141(23): p. 234313.
11. Bini, R. and G. Pratesi, High-pressure infrared study of solid methane: Phase diagram up to 30 GPa. Physical Review B, 1997. 55(22): p. 14800.
12. Umemoto, S., et al., X-ray diffraction measurements for solid methane at high pressures. Journal of Physics: Condensed Matter, 2002. 14(44): p. 10675.
13. Sun, L., et al., X-ray diffraction studies and equation of state of methane at 202 GPa. Chemical Physics Letters, 2009. 473(1-3): p. 72-74.
14. Chen, P.-N., et al., Raman study of phase transitions in compressed methane using moissanite anvil cells. Physical Review B, 2011. 84(10): p. 104110.
15. Bykov, M., et al., Structural and vibrational properties of methane up to 71 GPa. Physical Review B, 2021. 104(18): p. 184105.
16. Gao, G., et al., Dissociation of methane under high pressure. The Journal of chemical physics, 2010. 133(14): p. 144508.
17. Hirai, H., et al., Polymerization and diamond formation from melting methane and their implications in ice layer of giant planets. Physics of the Earth and Planetary Interiors, 2009. 174(1): p. 242-246.
18. Deemyad, S. and I.F. Silvera, Melting Line of Hydrogen at High Pressures. Physical Review Letters, 2008. 100(15): p. 155701.
19. de Pater, I., J.J. Lissauer, and W.B. Hubbard, Planetary Sciences. Physics Today, 2002. 55(12): p. 64-64.
20. Lin, H., et al., Structural, electronic, and dynamical properties of methane under high pressure. The Journal of chemical physics, 2011. 134(6): p. 064515.
21. Naumova, A.S., S.V. Lepeshkin, and A.R. Oganov, Hydrocarbons under Pressure: Phase Diagrams and Surprising New Compounds in the C–H System. The Journal of Physical Chemistry C, 2019. 123(33): p. 20497-20501.
22. Ishikawa, T. and T. Miyake, Evolutionary construction of a formation-energy convex hull: Practical scheme and application to a carbon-hydrogen binary system. Physical Review B, 2020. 101(21): p. 214106.
23. Clark, S.J., et al., First principles methods using CASTEP. Zeitschrift für Kristallographie-Crystalline Materials, 2005. 220(5-6): p. 567-570.
24. Pickard, C.J. and R. Needs, Ab initio random structure searching. Journal of Physics: Condensed Matter, 2011. 23(5): p. 053201.
25. Hohenberg, P. and W. Kohn, Inhomogeneous electron gas. Physical review, 1964. 136(3B): p. B864.
26. Kohn, W. and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 1965. 140(4A): p. A1133-A1138.
27. Di Ventra, M. and N.D. Lang, Transport in nanoscale conductors from first principles. Physical Review B, 2001. 65(4): p. 045402.
28. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical review letters, 1996. 77(18): p. 3865.
29. Perdew, J.P., et al., Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 2008. 100(13): p. 136406.
30. Tao, J., et al., Climbing the Density Functional Ladder: Nonempirical Meta--Generalized Gradient Approximation Designed for Molecules and Solids. Physical Review Letters, 2003. 91(14): p. 146401.
31. Constantin, L.A., J.P. Perdew, and J. Tao, Meta-generalized gradient approximation for the exchange-correlation hole with an application to the jellium surface energy. Physical Review B, 2006. 73(20): p. 205104.
32. Chelikowsky, J.R., 1.01 - Electrons in Semiconductors: Empirical and ab initio Pseudopotential Theories, in Comprehensive Semiconductor Science and Technology, P. Bhattacharya, R. Fornari, and H. Kamimura, Editors. 2011, Elsevier: Amsterdam. p. 1-41.
33. Sankey, O.F. and R.E. Allen, Atomic forces from electronic energies via the Hellmann-Feynman theorem, with application to semiconductor (110) surface relaxation. Physical Review B, 1986. 33(10): p. 7164-7171.
34. Nielsen, O.H. and R.M. Martin, Quantum-mechanical theory of stress and force. Physical Review B, 1985. 32(6): p. 3780-3791.
35. Chaput, L., et al., Phonon-phonon interactions in transition metals. Physical Review B, 2011. 84(9): p. 094302.
36. Vinet, P., et al., Temperature effects on the universal equation of state of solids. Physical Review B, 1987. 35(4): p. 1945-1953.
37. Birch, F., Finite Elastic Strain of Cubic Crystals. Physical Review, 1947. 71(11): p. 809-824.
38. Murnaghan, F.D., The Compressibility of Media under Extreme Pressures. Proceedings of the National Academy of Sciences, 1944. 30(9): p. 244.
39. Ceperley, D.M. and B.J. Alder, Ground state of the electron gas by a stochastic method. Physical review letters, 1980. 45(7): p. 566.
40. Csonka, G.I., et al., Assessing the performance of recent density functionals for bulk solids. Physical Review B, 2009. 79(15): p. 155107.
41. Togo, A. and I. Tanaka, First principles phonon calculations in materials science. Scripta Materialia, 2015. 108: p. 1-5.
42. Qin, T., et al., qha: A Python package for quasiharmonic free energy calculation for multi-configuration systems. Computer Physics Communications, 2019. 237: p. 199-207.
43. Hirai, H., et al., Polymerization and diamond formation from melting methane and their implications in ice layer of giant planets. Physics of the Earth and Planetary Interiors, 2009. 174(1-4): p. 242-246.
44. Lobanov, S.S., et al., Carbon precipitation from heavy hydrocarbon fluid in deep planetary interiors. Nature Communications, 2013. 4(1): p. 1-8.
45. Nakahata, I., et al., Structural studies of solid methane at high pressures. Chemical physics letters, 1999. 302(3-4): p. 359-362.
46. Stacey, F.D. and J.H. Hodgkinson, Thermodynamics with the Grüneisen parameter: Fundamentals and applications to high pressure physics and geophysics. Physics of the Earth and Planetary Interiors, 2019. 286: p. 42-68.
47. Cogollo-Olivo, B.H., et al., Ab initio Determination of the Phase Diagram of CO 2 at High Pressures and Temperatures. Physical review letters, 2020. 124(9): p. 095701. |