以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:104 、訪客IP:3.133.136.214
姓名 吳博鏞(Bo-Yong Wu) 查詢紙本館藏 畢業系所 物理學系 論文名稱 鉍摻雜鎳金屬奈米顆粒的超導及磁性探討 相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本論文所探討的是,我們利用双鍍源低真空熱蒸鍍冷凝法,來進行金屬鉍的奈米粒子製備。於實驗時控制並藉由調整鎳金屬鍍源的電流,以達到摻雜不同鎳含量樣品的目的。由於近期的新發現,在常壓下溫度小於 0.53 mK 時,鉍金屬塊材被發現具有超導現象的存在,因此我們便嘗試縮小其體積至奈米尺度,並且摻雜鎳於鉍的晶格點上,來看是否能夠對原先超導溫度極低的鉍,帶來增強其超導性質的表現。
在此我們製備了粒徑為 12 nm 的菱形晶格鉍奈米粒子,在常壓下可測得其超導溫度為 4 K。然後進一步地,製備相同粒徑大小卻給予其不同摻雜鎳金屬比例的菱形晶格鉍奈米粒子,當奈米粒子樣品的摻雜鎳含量分別為 6%, 8%,以及 10% 時,其超導臨界溫度和原先未摻雜的樣品相比,分別顯著增強達到了 7 K,12 K, 以及 18 K。我們同時也發現,其超導性在此可以和鐵磁性共存。摘要(英) The topic which we discuss in the thesis is that we fabricate the sample of bismuth nanoparicles by the way of double-source evaporation with low vacuum. In order to get the samples which are different ratio of nickel doping in the bismuth, we control the current of the nickel source in the evaporation chamber. Because of the recently new finding the bulk of bismuth in ambient pressure when the temperature is below to 0.53 mK, which demonstrate that the existence of superconductivity. We would like to enhance the performance of the superconductivity of bismuth, by doping the nickel on the lattice of the bismuth, and also reduce its size as the nanoparticle scale.
We fabricate the rhombohedral bismuth nanoparticles which the size are 12 nm, and the TC = 4 K in ambient pressure. For the next step, we also fabricate the rhombohedral bismuth nanoparticles which the sizes are the same, but with the different ratio of doping with nickel. We compare the sample of nanoparticles which have the same size but the ratio of doping with nickel are 6%, 8%, and 10%, and which are greatly enhanced to 7K, 12K, and 18K.We also can figure out that the phenomenon which superconductivity can coexist with ferromagnetism.關鍵字(中) ★ 超導
★ 鉍奈米粒子
★ 增強關鍵字(英) ★ Superconductivity
★ Bismuth Nanoparticles
★ Enhanced論文目次 論文摘要 …………………………………………………………… i
Abstract ………………………………………………………… ii
誌謝 ……………………………………………………………… iii
目錄 ……………………………………………………………… x
圖目錄 …………………………………………………………… xi
表目錄 …………………………………………………………… xiv
第一章 簡介……………………………………………………… 1
1-1 塊材鉍的基本物理性質………………………………… 1
1-2 塊材鎳的基本物理性質………………………………… 3
1-3 奈米尺度下的物理性質………………………………… 4
1-4 超導物理特性簡介……………………………………… 6
第二章 實驗儀器與原理………………………………………… 8
2-1 奈米微粒及薄膜製備方法……………………………… 8
2-2 樣品製備程序…………………………………………… 12
2-3 X光繞射儀………………………………………….…… 15
2-4 X射線光電子能譜儀……………………………….…… 18
2-5 物理特性量測系統……………………………………… 19
2-6 穿透式電子顯微鏡……………………………………… 21
第三章 摻雜鎳金屬鉍奈米顆粒的探討………………………… 24
3-1 樣品結構分析…………………………………………… 24
3-2 樣品組成比例分析……………………………………… 30
3-3 樣品平均粒徑分析……………………...………….…… 34
3-4 樣品磁性與超導分析…………………………...….…… 37
第四章 結論……………………………………………………… 40
參考文獻 ………………………………………………………… 41
參考文獻 [1] 許均銓,「顆粒間交互作用對奈米鉍自發磁性之影響」,
國立中央大學, 碩士論文 (2009).
[2] 蕭詠銜,「鎳奈米微粒間交互作用對磁特性的影響」,
國立中央大學, 碩士論文 (2007).
[3] Fig 01_Bismuth, THE HISTORY OF BISMUTH https://kimte.weebly.com/history-of-bismuth.html
[4] The Element Bismuth,
https://education.jlab.org/itselemental/ele083.html
[5] 鉍的發現歷史及行業發展, http://baike.asianmetal.cn/metal/bi/history.shtml
[6] David R. Lide, ed., CRC Handbook of Chemistry and Physics,
Internet Version 2005, <http://www.hbcpnetbase.com>,
CRC Press, Boca Raton, FL, (2005).
[7] Om Prakash et al. Evidence for bulk superconductivity in pure bismuth single crystals at ambient pressure. Science, Vol. 355, No. 6320 52-55 (2017).
[8] Zaahel Mata-Pinzón et al. Superconductivity in Bismuth. A New Look at an Old Problem. PLoS One, 11, No. e0147645 (2016).
[9] M.A. Il’ina et al. Superconductivity of Bismuth, Barium, and Lead at Pressures Exceeding 100 Kbar. Sov. Phys. JEPT, Vol. 34, No. 6, 1263-1265 (1971).
[10] Fig 03_Nickel_chunk, By Materialscientist at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8755724
[11] 賴炤銘, 李錫隆,「奈米材料的特殊效應與應用」,
CHEMISTRY(THE CHINESE CHEM. SOC., TAIPEI)
Vol. 61, No. 4, pp.585~597 December. (2003).
[12] Ryogo Kubo, Electronic Properties of Metallic Fine Particles. I.,
Journal of the Physical Society of Japan, Vol. 17, No. 6, June, (1962).
[13] 蔡享源,「錫銦合金奈米顆粒的超導及磁性探討」,
國立中央大學, 碩士論文 (2016).
[14] 郭清癸, 黃俊傑, 牟中原,「金屬奈米粒子的製造」,
pp.614~624, 物理雙月刊(廿三卷六期), 2001年12月.
[15] 奈米材料製作, http://nano.nstm.gov.tw/NanoConcept/Inspection/MaterialProduction.htm
[16] 水熱合成奈米粉體, http://www.asia-giant.com.tw/tw_technologr_a02.html
[17] K. Byrappa, Masahiro Yoshimura. Handbook of Hydrothermal Technology (Second Edition), William Andrew Publishing, ISBN 978-0-12-375090-7, (2013).
[18] 楊仲準, Chamber.ppt, (2004).
[19] Bragg′s law in WIKI, https://en.wikipedia.org/wiki/File:BraggPlaneDiffraction.svg
[20] 林麗娟, X光繞射原理及其應用, https://www.materialsnet.com.tw/AD/ADImages/%E5%BB%A3%E5%91%8A/MCLM100/download/equipment/XR/TF-XRD/TF-XRD001.pdf , pp.100~109, 工業材料86 期, 83 年 2 月
[21] Instrument X-ray Optics I. Reflection Geometry, http://pd.chem.ucl.ac.uk/pdnn/inst1/optics1.htm ,
Birkbeck College, University of London.
[22] http://player.slideplayer.com/download/14/4303093/pZ-oheb96jOPio_dqTdQTA/1541467864/4303093.ppt , R. Haberkom & BRUKER AXS, (1999).
[23] 黃宇軒, Na-Fe-Fe普魯士藍奈米顆粒之 物性分析與電池應用,
國立中央大學,碩士論文 (2017).
[24] A.C. Larson and R.B. Von Dreele, "General Structure Analysis System (GSAS)", Los Alamos National Laboratory Report LAUR 86-748 (2000).
[25] B. H. Toby, EXPGUI, a graphical user interface for GSAS,
J. Appl. Cryst. 34, 210-213 (2001).
[26] H. M. Rietveld, J. Appl. Cryst. 2, 65-71, (1969).
[27] S.C. Tjong et al., Mater. Sci. Eng. R 45, 1 (2004).指導教授 李文献(Wen-Hsien Li) 審核日期 2022-1-27 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare