參考文獻 |
(1) Renewable 2021 Global Status Report, REN21, 2021.
(2) https://ec.europa.eu/eurostat/
(3) https://www.eia.gov/todayinenergy/
(4) M. Forough, “Towards Sustainable China-MENA Relations in the Renewable Energy Sector”, The Netherlands, Leiden Asia Centre, 2021.
(5) https://www.cleanenergyreviews.info/blog/most-efficient-solar-panels/
(6) http://en. wikipedia. org/wiki/Abundance_of_elements_in_Earth/
(7) USGS. National Minerals Information Center
(8) Daniel, A. R; Thomas, K.; Uwe, R. Advanced Characterization Techniques for Thin Film Solar Cells. Wiley-VCH, 2016.
(9) Luque, A.; Hegedus, S.; Handbook of Photovoltaic Science and Engineering. Wiley-VCH, 2003.
(10) Chantana, J.; Kawano, Y.; Nishimura, T.; Kimoto, Y.; Kato, T.; Sugimoto, H.; Minemoto, T.; Transparent Electrode and Buffer Layer Combination for Reducing Carrier Recombination and Optical Loss Realizing over a 22%-Efficient Cd-Free Alkaline-Treated Cu(In,Ga)(S,Se)2 Solar Cell by the All-Dry Process. ACS Appl. Mater. Interfaces 2020, 12, 22298−22307.
(11) Du, Y.; Wang, S.; Tian, Q.; Zhao, Y.; Chang, X.; Xiao, H.; Deng, Y.; Chen, S.; Wu, S.; Liu, S. Defect Engineering in Earth-Abundant Cu2ZnSn(S,Se)4 Photovoltaic Materials via Ga3+-Doping for over 12% Efficient Solar Cells. Adv. Funct. Mater. 2021, 2010325.
(12) Roland, S.; Hans, W. Chalcogenide Photovoltaics. Wiley-VCH, 2011.
(13) Albert, P.; Mark K.; Erik, C. G.; Bruno, E.; Wim C. Sinke. Photovoltaic Materials: Present Efficiencies and Future Challenges. Science, 2016.
(14) Manjeet, S.; Tanka, R. R.; Seong, Y. K.; Kihwan, K.; Jae, H. Y.; Jun, H. K. Silver Nanowires Binding with Sputtered ZnO to Fabricate Highly Conductive and Thermally Stable Transparent Electrode for Solar Cell Applications. ACS Appl. Mater. Interfaces 2016, 8, 12764−12771.
(15) P. Sinsermsuksakul, L. Sun, S. W. Lee, H. H. Park, S. B. Kim, C. Yang, R. G. Gordon, Overcoming Efficiency Limitations of SnS-Based Solar Cells. Adv. Energy Mater. 2014, 4, 1400496.
(16) Steinmann, V.; Jaramillo, R.; Hartman, K.; Chakraborty, R.; Brandt, R. E.; Poindexter, J. R.; Lee, Y. S.; Sun, L.; Polizzotti, A.; Park, H. H.; Gordon, R. G.; Buonassisi, T. 3.88% Efficient Tin Sulfide Solar Cells Using Congruent Thermal Evaporation. Adv. Mater. 2014, 26, 7488–7492.
(17) Kawano, Y.; Chantana, J.; Minemoto, T. Impact of Growth Temperature on the Properties of SnS Film Prepared by Thermal Evaporation and Its Photovoltaic Performance. Curr. Appl. Phys. 2015, 15, 897-901.
(18) Steinmann, V.; Brandt, R. E.; Buonassisi, T. Non-cubic Solar Cell Materials. Nat. Photonics. 2015, 9, 355–357.
(19) Lee, H.; Yang, W.; Tan, J.; Park, J.; Shim, S. G.; Park, Y. S.; Yun, J. W.; Kim, K. M.; Moon, J. High-Performance Phase-Pure SnS Photocathodes for Photoelectrochemical Water Splitting Obtained via Molecular Ink-Derived Seed-Assisted Growth of Nanoplates. ACS Appl. Mater. Interfaces 2020, 12, 15155−15166.
(20) Sun, L.; Haight, R.; Sinsermsuksakul, P.; Kim, S. B.; Park, H. H.; Gordon, R. G. Band Alignment of SnS/Zn(O,S) Heterojunctions in SnS Thin Film Solar Cells. Appl. Phys. Lett. 2013, 103, 181904.
(21) Pawar, P. S.; Cho, J. Y.; Neerugatti, K. E.; Sinha, S.; Rana, T. R.; Ahn, S.; Heo, J. Solution-Processed ZnxCd1−xS Buffer Layers for Vapor Transport Deposited SnS Thin-Film Solar Cells: Achieving High Open-Circuit Voltage. ACS Appl. Mater. Interfaces 2020, 12, 7001–7009.
(22) Patel, M.; Ray, A. Evaluation of Back Contact in Spray Deposited SnS Thin Film Solar Cells by Impedance Analysis. ACS Appl. Mater. Interfaces 2014, 6, 10099−10106.
(23) Martin, G.; Ewan, D.; Jochen, H. E.; Masahiro, Y.; Nikos, K.; Xiaojing, H. Solar Cell Efficiency Tables (version 57). Prog Photovolt Res Appl. 2021, 29, 3 – 15.
(24) Lim, D.; Suh, H.; Suryawanshi, M.; Song, G. Y.; Cho, J. Y.; Kim, J. H.; Jang, J. H.; Jeon, C. W.; Cho, A.; Ahn, S.; Heo, J. Kinetically Controlled Growth of Phase-Pure SnS Absorbers for Thin Film Solar Cells: Achieving Efficiency Near 3% with Long-Term Stability Using an SnS/CdS Heterojunction. Adv. Energy Mater. 2018, 8, 1702605.
(25) Cho, J. Y.; Kim, S. Y.; Nandi, R.; Jang, J.; Yun, H. S.; Enkhbayar, E.; Kim, J. H.; Lee, D. K.; Chung, C. H.; Kim, J. H.; Heo, J. Achieving Over 4% Efficiency for SnS/CdS Thin-Film Solar Cells by Improving the Heterojunction Interface Quality. J. Mater. Chem. A. 2020, 8, 20658-20665.
(26) Zhou, Y.; Wang, L.; Chen, S.; Qin, S.; Liu, S.; Chen, J.; Xue, D. J.; Luo, M.; Cao, Y.; Cheng, Y.; Sargent, E. H.; Tang, J. Thin-film Sb2Se3 Photovoltaics with Oriented One-Dimensional Ribbons and Benign Grain Boundaries. Nat. Photonics. 2015, 9, 409-416.
(27) Tang, R.; Wang, X.; Lian, W.; Huang , J.; Wei , Q.; Huang, M.; Yin, Y.; Jiang, C.; Yang , C.; Xing , G.; Chen, S.; Zhu, C.; Hao, X.; Green, M. A.; Chen, T. Hydrothermal Deposition of Antimony Selenosulfide Thin Films Enables Solar Cells with 10% Efficiency. Nat. Energy. 2020, 5, 587–595.
(28) Wen, X.; Lu, Z.; Wang, G. C.; Washington, M. A.; Lu, T. M. Efficient and Stable Flexible Sb2Se3 Thin Film Solar Cells Enabled by an Epitaxial CdS Buffer Layer. Nano Energy 2021, 85, 106019.
(29) Chen, B.; Ruan, Y.; Li, J.; Wang, W.; Liu, X.; Cai, H.; Yao, L.; Zhang, J. M.; Chena, S.; Chen, G. Highly Oriented GeSe Thin Film: Self-Assembly Growth via the Sandwiching Post-Annealing Treatment and Its Solar Cell Performance. Nanoscale. 2019, 11, 3968.
(30) Feng, M.; Liu, S. C.; Hu, L.; Wu, J.; Liu, X.; Xue, D. J.; Hu, J. S.; Wan, L. J. Interfacial Strain Engineering in Wide-Bandgap GeS Thin Films for Photovoltaics. J. Am. Chem. Soc. 2021, 143, 9664–9671.
(31) Albers, W.; Haas, C.; Vink, H. J.; Wasscher, J. D. Investigations on SnS. Appl. Phys 1961, 32, 2220.
(32) Banai, R. E.; Horn, M. W.; Brownson, J. R. S. A Review of Tin (II) Monosulfide and Its Potential as a Photovoltaic Absorber. Sol. Energy Mater Sol. Cells 2016, 150, 112–129.
(33) Burton, L. A.; Colombara, D.; Abellon, R. D.; Grozema, F. C.; Peter, L. M.; Savenije, T. J.; Dennler, G.; Walsh, A. Synthesis, Characterization, and Electronic Structure of Single-Crystal SnS, Sn2S3, and SnS2. Chem. Mater. 2013, 25, 4908 – 4916.
(34) Xiao, Z.; Ran, F. Y.; Hosono, H.; Kamiya, T. Route to n-type Doping in SnS. Appl. Phys. Lett. 2015, 106, 152103.
(35) Reddy, N. K.; Devika, M.; Gunasekhar, K. R. Influence of Seed Layer Orientation on the Growth and Physical Properties of SnS Nanostructures. Appl. Phys. A 2014, 116, 1193−1197.
(36) Tritsaris, G. A.; Malone, B. D.; Kaxiras, E. Structural Stability and Electronic Properties of Low-index Surfaces of SnS. J. Appl. Phys. 2014, 115, 173702.
(37) Noguchi, H.; Setiyadi, A.; Tanamura, H.; Nagatomo, T.; Omoto, O. Characterization of Vacuum-evaporated Tin Sulfide Film for Solar Cell Materials. Sol. Energy Mater. Sol. Cells 1994, 25, 325-331.
(38) Johnson, J. B.; Jones, H.; Latham, B. S.; Parker, J. D.; Engelken, R. D.; Barber, C. Optimization of Photoconductivity in Vacuum-evaporated Tin Sulfide Thin Films. Semicond. Sci. Tech. 1999, 14, 501.
(39) Devika, M.; Reddy, K. T. R. Microstructure Dependent Physical Properties of Evaporated Tin Sulfide Films. J. Appl. Phys. 2006,100, 023518.
(40) Kawano, Y.; Chantana, J.; Minemoto, T. Impact of Growth Temperature on the Properties of SnS Film Prepared by Thermal Evaporation and Its Photovoltaic Performance. Curr. Appl. Phys. 2015, 15, 897-901.
(41) Sinsermsuksakul, P.; Heo, J.; Noh, W.; Hock, A. S.; Gordon, R. G. Atomic Layer Deposition of Tin Monosulfide Thin Films. Adv. Energy Mater. 2011, 1, 1116-1125.
(42) Reddy, V. R. M. ; Gedi, S.; Park, C.; Miles, R. W.; Reddy, R. K. T. Development of Sulphurized SnS Thin Film Solar Cells. Curr. Appl. Phys. 2015, 15, 588-598.
(43) Avellaneda, D.; Nair, M. T. S.; Nair, P. K. Polymorphic Tin Sulfide Thin Films of Zinc Blende and Orthorhombic Structures by Chemical Deposition. J. Electrochem. Soc. 2008, 155, D517.
(44) Turan, E.; Kul, M.; Aybek, A. S.; Zor, M. Structural and Optical Properties of SnS Semiconductor Films Produced by Chemical Bath Deposition. J. Phys. D Appl. Phys. 2009, 42, 245408.
(45) Gao, C.; Shen, H. L.; Sun, L.; Huang, H. B.; Lu, L. F.; Cai, H. Preparation of SnS Films with Zinc Blende Structure by Successive Ionic Layer Adsorption and Reaction Method. Mater. Lett. 2010, 64, 2177.
(46) Yun, H. S.; Park, B. W; Choi, Y. C.; Im, J.; Shin, T. J.; Seok, S. I. Efficient Nanostructured TiO2/SnS Heterojunction Solar Cells. Adv. Energy Mater. 2019, 9, 1901343.
(47) Cho, J. Y.; Sinha, S.; Gang, M. G.; Heo, J. Controlled Thickness of a Chemical-bath-deposited CdS Buffer Layer for a SnS Thin Flm Solar Cell with More Than 3% Efficiency. J. Alloys Compd. 2019, 796, 160-166.
(48) Minemoto, T.; Matsui, T.; Takakura, H.; Hamakawa, Y.; Negami, T.; Hashimoto, Y.; Uenoyama, T; Kitagawa, M. Theoretical Analysis of the Effect of Conduction Band Offset of Window/CIS Layers on Performance of CIS Solar Cells Using Device Simulation. Sol. Energy Mater Sol. Cells 2001, 67, 83-88.
(49) Shiel, H.; Hutter, O. S.; Phillips, L. J.; Swallow, J. E. N.; Jones, L. A. H.; Featherstone, T. J.; Smiles, M. J.; Thakur, P. K.; Lee, T. L.; Dhanak, V. R.; Major, J. D.; Veal, T. D. Natural Band Alignments and Band Offsets of Sb2Se3 Solar Cells. ACS Appl. Energy Mater. 2020, 3, 11617 – 11626.
(50) Sugiyama, M.; Shimizu, T.; Kawade, D.; Ramya, K.; Reddy, K. T. R. Experimental Determination of Vacuum-Level Band Alignments of SnS-Based Solar Cells by Photoelectron Yield Spectroscopy. J. Appl. Phys. 2014, 115, 083508.
(51) Rana, T. R.; Kim, S. Y.; Kim, J. H.; Kim, K.; Yun, J. H. A Cd-Reduced Hybrid Buffer Layer of CdS/Zn(O,S) for Environmentally Friendly CIGS Solar Cells. Sustain. Energy Fuels 2017, 1, 1981–1990.
(52) Chantana, J.; Kato, T.; Sugimoto, H.; Minemoto, T. 20% Efficient Zn0.9Mg0.1O:Al/Zn0.8Mg0.2O/Cu(In,Ga)(S,Se)2 Solar Cell Prepared by All-Dry Process through a Combination of Heat-Light Soaking and Light-Soaking Processes. ACS Appl. Mater. Interfaces 2018, 10, 11361−11368.
(53) Larsen, J. K.; Larsson, F.; Törndahl, T.; Saini, N.; Riekehr, L.; Ren, Y.; Biswal, A.; Hauschild, D.; Weinhardt, L.; Heske, C.; Platzer-Björkman, C. Cadmium Free Cu2ZnSnS4 Solar Cells with 9.7% Efficiency. Adv. Energy Mater. 2019, 9, 1900439.
(54) Lee, J.; Enkhbat, T.; Han, G.; Sharif, M. H.; Enkhbayar, E.; Yoo, H.; Kim, J. H.; Kim, S. Y.; Kim, J. H. Over 11 % Efficient Eco-Friendly Kesterite Solar Cell: Effects of S-Enriched Surface of Cu2ZnSn(S,Se)4 Absorber and Band Gap Controlled (Zn,Sn)O Buffer, Nano Energy 2020, 78, 105206.
(55) Sun, L.; Haight, R.; Sinsermsuksakul, P.; Kim, S. B.; Park, H. H.; Gordon, R. G. Band Alignment of SnS/Zn(O,S) Heterojunctions in SnS Thin Film Solar Cells. Appl. Phys. Lett. 2013, 103, 181904.
(56) Hultqvist, A.; Platzer-Bjorkman, C.; Coronel, E.; Edoff, M. Experimental Investigation of Cu(In1-x,Gax)Se2/Zn(O1-z,Sz) Solar Cell Performance. Sol. Energy Mater. Sol. Cells 2011, 95, 497–503.
(57) Lancaster, D. K.; Sun, H.; George, S. M. Atomic Layer Deposition of Zn(O,S) Alloys Using Diethylzinc with H2O and H2S: Effect of Exchange Reactions. J. Phys. Chem. C 2017, 121, 18643−18652.
(58) Ikuno, T.; Suzuki, R.; Kitazumi, K.; Takahashi, N.; Kato, N.; Higuchi, K. SnS Thin Film Solar Cells with Zn1-xMgxO Buffer Layers, Appl. Phys. Lett. 2013, 102, 193901.
(59) Reddy, V. R. M.; Gedi, S.; Park, C.; Miles, R. W.; Ramakrishna Reddy K. T. Development of Sulphurized SnS Thin Flm Solar Cells. Curr. Appl. Phys. 2015, 15, 588-598.
(60) Pettersson, J.; Platzer-Björkman, C.; Edoff, M. Temperature-Dependent Current-Voltage and Light Soaking Measurements on Cu(In,Ga)Se2 Solar Cells with ALD-Zn1−xMgxO Buffer Layers. Prog. Photovolt: Res. Appl. 2009, 17, 460–469.
(61) A. O. Pudov, A. Kanevce, H. A. Al-Thani, J. R. Sites, F. S. Hasoon, Secondary Barriers in CdS–CuIn1−xGaxSe2 Solar Cells. J. Appl. Phys. 2005, 97, 064901.
(62) Kraut, E. A.; Grant, R. W.; Waldrop, J. R.; Eowalczyk, S. P. Precise Determination of the Valence-Band Edge in X-Ray Photoemission Spectra: Application to Measurement of Semiconductor Interface Potentials. Phys. Rev. Lett. 1980, 44, 1620.
(63) M. H. Chiu, C. Zhang, H. W. Shiu, C. P. Chuu, C. H. Chen, C. Y. S. Chang, C. H. Chen, M. Y. Chou, C. K. Shih, L. J. Li, Determination of Band Alignment in the Single-layer MoS2/WSe2 Heterojunction. Nat. Commun. 2015, 6, 7666.
(64) Dasgupta, U.; Bera, A.; Pal, A. J. Band Diagram of Heterojunction Solar Cells through Scanning Tunneling Spectroscopy. ACS Energy Lett. 2017, 2, 582-591.
(65) Y. P. Chiu, B. C. Huang, M. C. Shih, P. C. Huang, C. W. Chen, Atomic-scale Mapping of Electronic Structures Across Heterointerfaces by Cross-sectional Scanning Tunneling Microscopy. J. Phys.: Condens. Matter 2015, 27, 34300.
(66) H. J. Liu, J. C. Wang, D. Y. Cho, K. T. Ho, J. C. Lin, B. C. Huang, Y. W. Fang, Y. M. Zhu, Q. Z., L. Xie, X. Q. Pan, Y. P. Chiu, C. G. Duan, J. H. He, Y. H. Chu, Giant Photoresponse in Quantized SrRuO3 Monolayer at Oxide Interfaces. ACS Photonics 2018, 5, 1041−1049.
(67) P. C. Huang, S. K. Huang, T. C. Lai, M. C. Shih, H. C. Hsu, C. H. Chen, C. C. Lin, C. H. Chiang, C. Y. Lin, K. Tsukagoshi, C. W. Chen, Y. P. Chiu, S. F. Tsay, Y. C. Wang, Visualizing Band Alignment Across 2D/3D Perovskite Heterointerfaces of Solar Cells with Light-Modulated Scanning Tunneling Microscopy. Nano Energy 2021, 89, 106362.
(68) Li, K.; Chen, C.; Lu, S.; Wang, C.; Wang, S.; Lu, Y.; Tang, J. Orientation Engineering in Low-Dimensional Crystal-Structural Materials via Seed Screening. Adv. Mater. 2019, 31, 1903914.
(69) Li, Z.; Liang, X.; Li, G.; Liu, H.; Zhang, H.; Guo, J.; Chen, J.; Shen, K.; San, X.; Yu, W.; Schropp, R. E. I.; Mai, Y. 9.2%-Efficient Core-Shell Structured Antimony Selenide Nanorod Array Solar Cells. Nat. Commun. 2019, 10, 125.
(70) Tang, R.; Wang, X.; Lian, W.; Huang , J.; Wei , Q.; Huang, M.; Yin, Y.; Jiang, C.; Yang , C.; Xing , G.; Chen, S.; Zhu, C.; Hao, X.; Green, M. A.; Chen, T. Hydrothermal Deposition of Antimony Selenosulfide Thin Films Enables Solar Cells with 10% Efficiency. Nat. Energy. 2020, 5, 587–595.
(71) Williams, R. E.; Ramasse, Q. M.; McKenna, K. P.; Phillips, L. J.; Yates, P. J.; Hutter, O. S.; Durose, K.; Major, J. D.; Mendis, B. G. Evidence for Self-healing Benign Grain Boundaries and a Highly Defective Sb2Se3–CdS Interfacial Layer in Sb2Se3 Thin-Film Photovoltaics. ACS Appl. Mater. Interfaces 2020, 12, 21730−21738.
(72) Bhaviripudi, S.; Jia, X.; Dresselhaus, M. S.; Kong, J. Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst. Nano Lett. 2010, 10, 4128–4133.
(73) Wang, S.; Pacios, M.; Bhaskaran, H.; Warner, J. H. Substrate Control for Large Area Continuous Films of Monolayer MoS2 by Atmospheric Pressure Chemical Vapor Deposition, Nanotechnology 2016, 27, 085604.
(74) Lee, D.; Cho, J. Y.; Yun, H. S.; Lee, D. K.; Kim, T.; Bang, K.; Lee, Y. S.; Kim, H. Y.; Heo, J. Vapor Transport Deposited Tin Monosulfide for Thin-Film Solar Cells: Effect of Deposition Temperature and Duration. J. Mater. Chem. A 2019, 7, 7186-7193.
(75) López Varo, P.; Jiménez Tejada, J. A.; López Villanueva, J. A.; Deen, M. J. Space-charge and Injection Limited Current in Organic Diodes: A Unified Model. Org. Electron. 2014, 15, 2526–2535
(76) Xiao, J.; Chen, Z.; Zhang, G.; Li, Q. Y.; Yin, Q.; Jiang, X. F.; Huang, F.; Xu, Y. X.; Yip, H. L.; Cao, Y. Efficient Device Engineering for Inverted Non-fullerene Organic Solar Cells with Low Energy Loss. J. Mater. Chem. C 2018, 6, 4457.
(77) Wei, Z.; Chen, H.; Yan, K.; Zheng, X.; Yang, S. Hysteresis-free Multi-walled Carbon Nanotube-based Perovskite Solar Cells with a High Fill Factor. J. Mater. Chem. 2015, 3, 24226-24231.
(78) Jin, X.; Fang, Y.; Salim, T.; Feng, M.; Hadke, S.; Leow, S. W.; Sum, T. C.; Wong, L. H. In Situ Growth of [hk1]-Oriented Sb2S3 for Solution-Processed Planar Heterojunction Solar Cell with 6.4% Efficiency. Adv. Funct. Mater. 2020, 3, 2002887.
(79) Mitchell, K. W.; Fahrenbruch, A. L.; Bube, R. H. Evaluation of the CdS/CdTe Heterojunction Solar Cell. J. Appl. Phys. 1977, 48, 10.
(80) Naby, M. A.; Zekry, A.; Akkad, F. E.; Ragaie, H. F. Dependence of Dark Current on Zinc Concentration in ZnxCd1−xS/ZnTe Heterojunctions. Sol. Energy Mater. Sol. Cells 1993, 29, 97-108.
(81) Rana, A.; Kumar, A.; Rahman, M. W.; Vashistha, N.; Garg, K. K.; Pandey, S.; Sahoo, N. G.; Chand, S.; Singh, R. K. Non-approximated Series Resistance Evaluation by Considering High Ideality Factor in Organic Solar Cell. AIP Advances 2018, 8, 125121.
(82) Chua, D.; Kim, S. B.; Sinsermsuksakul, P.; Gordon, R. Atomic Layer Deposition of Energy Band Tunable Tin Germanium Oxide Electron Transport Layer for the SnS-Based Solar Cells with 400 mV Open-Circuit Voltage. Appl. Phys. Lett. 2019, 114, 213901.
(83) Lee, J.; Enkhbat, T.; Han, G.; Sharif, M. H.; Enkhbayar, E.; Yoo, H.; Kim, J. H.; Kim, S. Y.; Kim, J. H. Over 11 % Efficient Eco-Friendly Kesterite Solar Cell: Effects of S-Enriched Surface of Cu2ZnSn(S,Se)4 Absorber and Band Gap Controlled (Zn,Sn)O Buffer. Nano Energy 2020, 78, 105206.
(84) Lindahl, J.; Wätjen, J. T.; Hultqvist, A.; Ericson, T.; Edoff, M.; Törndahl, T. The Effect of Zn1-xSnxOy Buffer Layer Thickness in 18.0% Efficient Cd-Free Cu(In,Ga)Se2 Solar Cells. Prog. Photovolt. 2013, 21, 1588-1597.
(85) Li, X.; Su, Z.; Venkataraj, S.; Batabyal, S. K.; Wong, L. H. 8.6% Efficiency CZTSSe Solar Cell with Atomic Layer Deposited Zn-Sn-O Buffer Layer. Sol. Energy Mater Sol. Cells 2016, 157, 101–107.
(86) Ericson, T.; Larsson, F.; Törndahl, T.; Frisk, C.; Larsen, J.; Kosyak, V.; Hägglund, C.; Li, S.; Platzer-Björkman, C. Zinc-Tin-Oxide Buffer Layer and Low Temperature Post Annealing Resulting in a 9.0% Efficient Cd-Free Cu2ZnSnS4 Solar Cell. Sol. RRL 2017, 1, 1700001.
(87) Shih, M. C.; Li, S. S.; Hsieh, C. H.; Wang, Y. C.; Yang, H. D.; Chiu, Y. P.; Chang, C. S.; Chen, C. W. Spatially Resolved Imaging on Photocarrier Generations and Band Alignments at Perovskite/PbI2 Heterointerfaces of Perovskite Solar Cells by Light-Modulated Scanning Tunneling Microscopy. Nano Lett. 2017, 17, 1154−1160.
(88) Chen, W. C.; Chen, C. Y.; Lin, Y. R.; Chang, J. K.; Chen, C. H.; Chiu, Y. P.; Wu, C. I.; Chen, K. H.; Chen, L. C. Interface Engineering of CdS/CZTSSe Heterojunctions for Enhancing the Cu2ZnSn(S,Se)4 Solar Cell Efficiency. Mater. Today Energy 2019, 13, 256-266.
(89) Yang, D.; Yang, R.; Wang, K.; Wu, C.; Zhu, X.; Feng, J.; Ren, X.; Fang, G.; Priya, S.; Liu, S. High Efficiency Planar-Type Perovskite Solar Cells with Negligible Hysteresis Using EDTA-Complexed SnO2. Nat. Commun. 2018, 9, 3239.
(90) Wang, J.; Zhang, J.; Zhou, Y.; Liu, H.; Xue, Q.; Li, X.; Chueh, C. C.; Yip, H. L.; Zhu, Z.; Jen, A. K. Y. Highly Efficient All-Inorganic Perovskite Solar Cells with Suppressed Non-Radiative Recombination by a Lewis Base. Nat. Commun. 2020, 11, 177.
(91) Shen, K.; Zhang, Y.; Wang, X.; Ou, C.; Guo, F.; Zhu, H.; Liu, C.; Gao, Y.; Schropp, R. E. I.; Li, Z.; Liu, X.; Mai, Y. Efficient and Stable Planar n–i–p Sb2Se3 Solar Cells Enabled by Oriented 1D Trigonal Selenium Structures. Adv. Sci. 2020, 7, 2001013.
(92) Enkhbat, T.; Kim, S. Y.; Kim, J. H. Device Characteristics of Bandgap Tailored 10.04% Efficient CZTSSe Solar Cells Sprayed from Water Based Solution. ACS Appl. Mater. Interfaces 2019, 11, 36735–36741. |