參考文獻 |
[1] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim. The electronic properties of graphene. Reviews of Modern Physics, 81(1):109– 162, January 2009.
[2] Young-WooSon,MarvinL.Cohen,andStevenG.Louie.Energygapsingraphene nanoribbons. Physical Review Letters, 97(21), November 2006.
[3] Katsunori Wakabayashi, Ken ichi Sasaki, Takeshi Nakanishi, and Toshiaki Enoki. Electronic states of graphene nanoribbons and analytical solutions. Science and Technology of Advanced Materials, 11(5):054504, October 2010.
[4] Toshiaki Enoki. Role of edges in the electronic and magnetic structures of nanographene. Physica Scripta, T146:014008, January 2012.
[5] Manish Chhowalla, Hyeon Suk Shin, Goki Eda, Lain-Jong Li, Kian Ping Loh, and Hua Zhang. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. NATURE CHEMISTRY, 5(4):263–275, APR 2013.
[6] Alexander V. Kolobov and Junji Tominaga. Two-Dimensional Transition-Metal Dichalcogenides. Springer International Publishing, 2016.
[7] Miklos Kertesz and Roald Hoffmann. Octahedral vs. trigonal-prismatic coordination and clustering in transition-metal dichalcogenides. Journal of the American Chemical Society, 106(12):3453–3460, June 1984.
[8] Diego Pasquier and Oleg V Yazyev. Crystal field, ligand field, and interorbital effects in two-dimensional transition metal dichalcogenides across the periodic table. 2D Materials, 6(2):025015, February 2019.
[9] Icuk Setiyawati, K.-R. Chiang, H.-M. Ho, and Y.-H. Tang. Distinct electronic and transport properties between 1T-HfSe2 and 1T-PtSe2. Chinese Journal of Physics, 62:151–160, December 2019.
[10] Wonbong Choi, Nitin Choudhary, Gang Hee Han, Juhong Park, Deji Akinwande, and Young Hee Lee. Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 20(3):116–130, April 2017.
[11] J.A. Wilson and A.D. Yoffe. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Advances in Physics, 18(73):193–335, May 1969.
[12] Hui Pan and Yong-Wei Zhang. Tuning the electronic and magnetic properties of MoS2 nanoribbons by strain engineering. The Journal of Physical Chemistry C, 116(21):11752–11757, May 2012.
[13] Wei Xu, Shiming Yan, and Wen Qiao. Magnetism in monolayer 1T-MoS2 and 1T-MoS2H tuned by strain. RSC Advances, 8(15):8435–8441, 2018.
[14] T. Eknapakul, I. Fongkaew, S. Siriroj, W. Jindata, S. Chaiyachad, S.-K. Mo, S. Thakur, L. Petaccia, H. Takagi, S. Limpijumnong, and W. Meevasana. Direct observation of strain-induced orbital valence band splitting in HfSe2 by sodium intercalation. Physical Review B, 97(20), May 2018.
[15] YajingSun,DongWang,andZhigangShuai.Indirect-to-directbandgapcrossover in few-layer transition metal dichalcogenides: A theoretical prediction. The Journal of Physical Chemistry C, 120(38):21866–21870, September 2016.
[16] Sujay B. Desai, Gyungseon Seol, Jeong Seuk Kang, Hui Fang, Corsin Battaglia, Rehan Kapadia, Joel W. Ager, Jing Guo, and Ali Javey. Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Letters, 14(8):4592–4597, July 2014.
[17] Bevin Huang, Genevieve Clark, Efre ́n Navarro-Moratalla, Dahlia R. Klein, Ran Cheng, Kyle L. Seyler, Ding Zhong, Emma Schmidgall, Michael A. McGuire, David H. Cobden, Wang Yao, Di Xiao, Pablo Jarillo-Herrero, and Xiaodong Xu. Layer-dependent ferromagnetism in a van der waals crystal down to the monolayer limit. Nature, 546(7657):270–273, June 2017.
[18] Kin Fai Mak, Jie Shan, and Daniel C. Ralph. Probing and controlling magnetic states in 2d layered magnetic materials. Nature Reviews Physics, 1(11):646–661, September 2019.
[19] Yandong Ma, Ying Dai, Meng Guo, Chengwang Niu, Yingtao Zhu, and Baibiao Huang. Evidence of the existence of magnetism in pristine VX2 monolayers (X = S, Se) and their strain-induced tunable magnetic properties. ACS Nano, 6(2):1695– 1701, 2012.
[20] Georgy V. Pushkarev, Vladimir G. Mazurenko, Vladimir V. Mazurenko, and Danil W. Boukhvalov. Structural phase transitions in VSe2: energetics, electronic structure and magnetism. Physical Chemistry Chemical Physics, 21(40):22647– 22653, 2019.
[21] Mahsa Abdollahi and Meysam Bagheri Tagani. Tuning intrinsic ferromagnetic and anisotropic properties of the janus VSeS monolayer. Journal of Materials Chemistry C, 8(38):13286–13296, 2020.
[22] Shan Liu, Heyu Zhu, Ziran Liu, and Guanghui Zhou. Symmetrical metallic and magnetic edge states of nanoribbon from semiconductive monolayer PtS2. Physics Letters A, 382(11):776–780, March 2018.
[23] Ruifeng Qi, Shanling Wang, Minxiang Wang, Wentao Liu, Zhihui Yan, Xiaofeng Bi, and Qingsong Huang. Towards well-defined MoS2 nanoribbons on a large scale. Chemical Communications, 53(70):9757–9760, 2017.
[24] Ahmet Avsar, Alberto Ciarrocchi, Michele Pizzochero, Dmitrii Unuchek, Oleg V. Yazyev, and Andras Kis. Defect induced, layer-modulated magnetism in ultrathin metallic PtSe2. Nature Nanotechnology, 14(7):674–678, June 2019.
[25] Priyanka Manchanda, Pankaj Kumar, and Pratibha Dev. Defect-induced 4p- magnetism in layered platinum diselenide. Physical Review B, 103(14), April 2021.
[26] JunGe,TianchuangLuo,ZuzhangLin,JianpingShi,YanzhaoLiu,PinyuanWang, Yanfeng Zhang, Wenhui Duan, and Jian Wang. Magnetic moments induced by atomic vacancies in transition metal dichalcogenide flakes. Advanced Materials, 33(4):2005465, December 2020.
[27] Wei Zhang, Hai Tao Guo, Jing Jiang, Qiu Chen Tao, Xiao Jiao Song, Hao Li, and Jie Huang. Magnetism and magnetocrystalline anisotropy in single-layer PtSe2: Interplay between strain and vacancy. Journal of Applied Physics, 120(1):013904, July 2016.
[28] Ahmet Avsar, Cheol-Yeon Cheon, Michele Pizzochero, Mukesh Tripathi, Alberto Ciarrocchi, Oleg V. Yazyev, and Andras Kis. Probing magnetism in atomically thin semiconducting PtSe2. Nature Communications, 11(1), September 2020.
[29] Zhuhua Zhang, Xiaolong Zou, Vincent H. Crespi, and Boris I. Yakobson. Intrinsic magnetism of grain boundaries in two-dimensional metal dichalcogenides. ACS Nano, 7(12):10475–10481, November 2013.
[30] Shiming Yan, Wen Qiao, Xueming He, Xiaobing Guo, Li Xi, Wei Zhong, and Youwei Du. Enhancement of magnetism by structural phase transition in MoS2. Applied Physics Letters, 106(1):012408, January 2015.
[31] M. Born and R. Oppenheimer. Zur Quantentheorie der Molekeln. Annalen der Physik, 389:457–484, 1927.
[32] D. R. Hartree. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods. Mathematical Proceedings of the Cambridge Philosophical Society, 24(1):89–110, 1928.
[33] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864– B871, Nov 1964.
[34] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140:A1133–A1138, Nov 1965.
[35] John P. Perdew, J. A. Chevary, S. H. Vosko, Koblar A. Jackson, Mark R. Pederson, D. J. Singh, and Carlos Fiolhais. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B, 46:6671–6687, Sep 1992.
[36] John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77:3865–3868, Oct 1996.
[37] Karl W Boeer and Udo W Pohl. Semiconductor Physics. Semiconductor Physics. Springer International Publishing, Cham, Switzerland, 1 edition, March 2018.
[38] P. E. Blo ̈chl. Projector augmented-wave method. Phys. Rev. B, 50:17953–17979, Dec 1994.
[39] Cheng Gong, Hengji Zhang, Weihua Wang, Luigi Colombo, Robert M. Wallace, and Kyeongjae Cho. Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. Applied Physics Letters, 103(5):053513, July 2013.
[40] Gary L Miessler, Paul J Fischer, and Donald A Tarr. Inorganic Chemistry. Pearson, Upper Saddle River, NJ, 5 edition, January 2013.
[41] Koichi Momma and Fujio Izumi. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6):1272–1276, 2011.
[42] G. Kresse and J. Furthmu ̈ller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54:11169–11186, Oct 1996.
[43] G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59:1758–1775, Jan 1999.
[44] Jeremy Taylor, Hong Guo, and Jian Wang. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B, 63:245407, Jun 2001.
[45] Derek Waldron, Lei Liu, and Hong Guo. Ab initio simulation of magnetic tunnel junctions. Nanotechnology, 18(42):424026, sep 2007.
[46] E. David and R. Lide. CRC Handbook of Chemistry and Physics. CRC press, 2021.
[47] P. W. Anderson. Localized magnetic states in metals. Phys. Rev., 124:41–53, Oct 1961.
[48] The Mathworks, Inc., Natick, Massachusetts. MATLAB version 9.9.0.1592791 (R2020b) Update 5, 2020. |