博碩士論文 106621023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:74 、訪客IP:3.144.253.195
姓名 李羿賢(Yi-Xian Li)  查詢紙本館藏   畢業系所 國際研究生博士學位學程
論文名稱 熱帶對流層氣溫之主要擾動有多接近對流準平衡?
(How Close Are Leading Tropical Tropospheric Temperature Perturbations to Those under Convective Quasi-Equilibrium?)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在對流準平衡理論中,熱帶對流層之溫度擾動預期受對流約束而遵循特定的垂直剖面(在本論文中稱其為 A-profile,常近似於濕絕熱線間剖面相減)。此研究發現在對流情況下:基於濕靜能守恆所導出的理想化A-profile與有/無將逸入納入計算的氣柱溫度擾動之差異皆不大—端賴於深對流好發於低對流層水氣接近飽和之時,從而大限度地減少了逸入對於對流層溫度的影響。因此,鑑於觀測氣溫剖面的假絕熱擾動法便提供了精簡實用的 A-profile計算基準。
在低於中性浮力高度(LNB)的大氣中,我們將A-profile與 ERA-Interim 再分析和 AIRS 衛星反演資料中經驗正交函數的首要模式(TEOF1)進行比較:具有高 LNB(通常高於400 hPa)的 TEOF1與 A -profile在垂直方向上存在高空間相關係數(~0.9),表明在有利於深對流的環境中:對流層溫度擾動傾向於符合對流準平衡假設。反之,較低的相關係數往往發生在氣候上 LNB 較低、不利於深對流的地區。我們亦發現若屏除低 LNB 之時刻,熱帶地區整體的垂直空間相關係數將顯著增加。
鄰近LNB的溫度擾動存在對A -profile的負偏差值—即對流冷頂(Convective cold top)現象—且LNB越高,其偏離程度越大。在相關係數較低的地區可觀察到TEOF1對A-profile的偏移量在600 hPa以下呈S形,且常伴隨著較乾燥的低對流層。即使垂直空間相關性和TEOF1可解釋變異量在較短的時間尺度上趨於降低,上述所有研究成果自日至月的廣泛時間尺度上都是穩健的。
摘要(英) In convective quasi-equilibrium theory, tropical tropospheric temperature perturbations are expected to follow vertical profiles constrained by convection, referred to as A-profiles here, often approximated by subtractions between moist adiabats. This study finds that differences between an idealized A-profile based on moist-static energy conservation and temperature perturbations derived from entraining and non-entraining parcel computations are modest under convective conditions—deep convection mostly occurs when lower troposphere is close to saturation, thus minimizing the impact of entrainment on tropospheric temperature. Simple calculations with pseudo-adiabatic perturbations about the observed profile thus provide useful baseline A-profiles.
We compare the first EOF mode of tropospheric temperature (TEOF1) from the ERA-Interim reanalysis and AIRS retrievals below the level of neutral buoyancy (LNB) with these A-profiles. The TEOF1 profiles with high LNB, typically above 400 hPa, yield high vertical spatial correlation (~0.9) with A-profiles, indicating that tropospheric temperature perturbations tend to be consistent with the quasi-equilibrium assumption where the environment is favorable to deep convection. On the contrary, lower correlation tends to occur in regions with low climatological LNB, less favorable to deep convection. We also find that excluding temperature profiles with low LNB significantly increases the tropical mean vertical spatial correlation.
The temperature perturbations near LNB exhibit negative deviations from the A-profiles—the convective cold top phenomenon—with greater deviation for higher LNB. One can observe that in regions with lower correlation, the deviation of TEOF1 from A-profile shows an S-like shape beneath 600 hPa, usually accompanied by a drier lower troposphere. All the above research findings are robust across a wide range of timescales from daily to monthly, although the vertical spatial correlation and TEOF1 explained variance tend to decrease on short timescales.
關鍵字(中) ★ 對流準平衡
★ 熱帶對流層氣溫
關鍵字(英) ★ Convective Quasi-Equilibrium
★ Tropical Tropospheric Temperature
論文目次 Curriculum Vitae i
摘要 iv
Abstract v
Acknowledgements vi
Contents ix
List of Figures x
List of Tables xv
Chapter 1 Introduction 1
Chapter 2 Data and Methodology 5
2.1 Datasets 5
2.2 Theoretical A-profile 5
2.3 Level of neutral buoyancy 8
2.4 Leading EOF mode of observed temperature variation 8
2.5 Entrainment assumptions and plume temperature variation 9
Chapter 3 Statistics of A-profile, plume temperature variation and LNB 12
3.1 Vertical Distribution between A-profile and plume temperature perturbations for entrainment sensitivity test 12
3.2 Geographical climatologies of LNB and A-profile 16
Chapter 4 Leading mode of temperature perturbation approximated by A-profile 18
4.1 Vertical structures categorized by LNB 18
4.2 Geographical pattern of vertical spatial correlation 22
4.3 Regional difference in vertical profiles 30
Chapter 5 Temperature profile correlations excluding cases with low LNB 33
5.1 Geographical change 33
5.2 Explanation for existing low correlation 35
Chapter 6 Discussion and Conclusions 42
References 45
Appendix A: Temporal variability of A-profile and LNB 52
Appendix B: Results from unpresented data 59
Appendix C: Repeated analysis of the free troposphere 78
參考文獻 Adames, Á. F., S. W. Powell, F. Ahmed, V. C. Mayta, and J. D. Neelin, 2021: Tropical Precipitation Evolution in a Buoyancy-Budget Framework. Journal of the Atmospheric Sciences, 78, 509-528, doi: https://doi.org/10.1175/JAS-D-20-0074.1
Ahmed, F., and J. D. Neelin, 2018: Reverse Engineering the Tropical Precipitation–Buoyancy Relationship. Journal of the Atmospheric Sciences, 75, 1587-1608, doi: https://doi.org/10.1175/JAS-D-17-0333.1
——, 2021: Protected Convection as a Metric of Dry Air Influence on Precipitation. Journal of Climate, 34, 3821-3838, doi: https://doi.org/10.1175/JCLI-D-20-0384.1
AIRS Science Team/Joao Teixeira 2013a: AIRS/Aqua L3 Daily Standard Physical Retrieval (AIRS+AMSU) 1 degree x 1 degree V006 (AIRX3STD), Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 02 August 2018, doi: https://doi.org/10.5067/Aqua/AIRS/DATA301
——, 2013b: AIRS/Aqua L3 Daily Support Product (AIRS+AMSU) 1 degree x 1 degree V006, Greenbelt (AIRX3SPD), MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 02 July 2021, doi: https://doi.org/10.5067/Aqua/AIRS/DATA304
——, 2013c: AIRS/Aqua L3 Monthly Support Product (AIRS+AMSU) 1 degree x 1 degree V006 (AIRX3SPM), Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 02 July 2021, doi: https://doi.org/10.5067/Aqua/AIRS/DATA322
——, 2013d: AIRS/Aqua L3 Monthly Standard Physical Retrieval (AIRS+AMSU) 1 degree x 1 degree V006 (AIRX3STM), Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 02 August 2018, doi: https://doi.org/10.5067/Aqua/AIRS/DATA319
Arakawa, A., 2004: The Cumulus Parameterization Problem: Past, Present, and Future. Journal of Climate, 17, 2493-2525, doi: https://doi.org/10.1175/1520-0442(2004)017<2493:Ratcpp>2.0.Co;2
Arakawa, A., and W. H. Schubert, 1974: Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part I. Journal of Atmospheric Sciences, 31, 674-701, doi: https://doi.org/10.1175/1520-0469(1974)031<0674:Ioacce>2.0.Co;2
Betts, A. K., 1982: Saturation Point Analysis of Moist Convective Overturning. Journal of Atmospheric Sciences, 39, 1484-1505, doi: https://10.1175/1520-0469(1982)039<1484:Spaomc>2.0.Co;2
Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quarterly Journal of the Royal Meteorological Society, 112, 677-691, doi: https://doi.org/10.1002/qj.49711247307
Bony, S., and Coauthors, 2015: Clouds, circulation and climate sensitivity. Nature Geoscience, 8, 261-268, doi: https://doi.org/10.1038/ngeo2398
Bretherton, C. S., and A. H. Sobel, 2003: The Gill Model and the Weak Temperature Gradient Approximation. Journal of the Atmospheric Sciences, 60, 451-460, doi: https://doi.org/10.1175/1520-0469(2003)060<0451:TGMATW>2.0.CO;2
Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between Water Vapor Path and Precipitation over the Tropical Oceans. Journal of Climate, 17, 1517-1528, doi: https://doi.org/10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2
Brown, R. G., and C. S. Bretherton, 1997: A Test of the Strict Quasi-Equilibrium Theory on Long Time and Space Scales. Journal of the Atmospheric Sciences, 54, 624-638, doi: https://doi.org/10.1175/1520-0469(1997)054<0624:Atotsq>2.0.Co;2
Bryan, G. H., and J. M. Fritsch, 2004: A Reevaluation of Ice–Liquid Water Potential Temperature. Monthly Weather Review, 132, 2421-2431, doi: https://doi.org/10.1175/1520-0493(2004)132<2421:Aroiwp>2.0.Co;2
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553-597, doi: https://doi.org/10.1002/qj.828
Derbyshire, S. H., I. Beau, P. Bechtold, J.-Y. Grandpeix, J.-M. Piriou, J.-L. Redelsperger, and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quarterly Journal of the Royal Meteorological Society, 130, 3055-3079, doi: https://doi.org/10.1256/qj.03.130
Durre, I., X. Yin, R. Vose, S. Applequiest, and J. Arnfield, 2016: Integrated Global Radiosonde Archive (IGRA) version 2. NOAA/National Centers for Environmental Information, accessed 29 August 2018, doi: https://doi.org/10.7289/V5X63K0Q
Emanuel, K. A., J. David Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quarterly Journal of the Royal Meteorological Society, 120, 1111-1143, doi: https://doi.org/10.1002/qj.49712051902
Fueglistaler, S., C. Radley, and I. M. Held, 2015: The distribution of precipitation and the spread in tropical upper tropospheric temperature trends in CMIP5/AMIP simulations. Geophysical Research Letters, 42, 6000-6007, doi: https://doi.org/10.1002/2015GL064966
Holloway, C. E., and J. D. Neelin, 2007: The Convective Cold Top and Quasi Equilibrium. Journal of the Atmospheric Sciences, 64, 1467-1487, doi: https://doi.org/10.1175/jas3907.1
——, 2009: Moisture Vertical Structure, Column Water Vapor, and Tropical Deep Convection. Journal of the Atmospheric Sciences, 66, 1665-1683, doi: https://doi.org/10.1175/2008JAS2806.1
——, 2010: Temporal Relations of Column Water Vapor and Tropical Precipitation. Journal of the Atmospheric Sciences, 67, 1091-1105, doi: https://doi.org/10.1175/2009JAS3284.1
Houze Jr., R. A., K. L. Rasmussen, M. D. Zuluaga, and S. R. Brodzik, 2015: The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Reviews of Geophysics, 53, 994-1021, doi: https://doi.org/10.1002/2015RG000488
Huffman, G. J., R. F. Adler, D. T. Bolvin, and E. J. Nelkin, 2010: The TRMM Multi-Satellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, M. Gebremichael, and F. Hossain, Eds., Springer Netherlands, 3-22.
Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. Journal of Hydrometeorology, 8, 38-55, doi: https://doi.org/10.1175/JHM560.1
Kuang, Z., 2008: Modeling the Interaction between Cumulus Convection and Linear Gravity Waves Using a Limited-Domain Cloud System–Resolving Model. Journal of the Atmospheric Sciences, 65, 576-591, doi: https://doi.org/10.1175/2007JAS2399.1
Kuo, H. L., 1974: Further Studies of the Parameterization of the Influence of Cumulus Convection on Large-Scale Flow. Journal of Atmospheric Sciences, 31, 1232-1240, doi: https://doi.org/10.1175/1520-0469(1974)031<1232:Fsotpo>2.0.Co;2
Kuo, Y.-H., J. D. Neelin, and C. R. Mechoso, 2017: Tropical Convective Transition Statistics and Causality in the Water Vapor–Precipitation Relation. Journal of the Atmospheric Sciences, 74, 915-931, doi: https://doi.org/10.1175/JAS-D-16-0182.1
Kuo, Y.-H., K. A. Schiro, and J. D. Neelin, 2018: Convective Transition Statistics over Tropical Oceans for Climate Model Diagnostics: Observational Baseline. Journal of the Atmospheric Sciences, 75, 1553-1570, doi: https://doi.org/10.1175/JAS-D-17-0287.1
Lin, J.-L., T. Qian, T. Shinoda, and S. Li, 2015: Is the Tropical Atmosphere in Convective Quasi-Equilibrium? Journal of Climate, 28, 4357-4372, doi: https://doi.org/10.1175/JCLI-D-14-00681.1
Manabe, S., J. Smagorinsky, and R. F. Strickler, 1965: Simulated Climatology of a General Circulation Model with a Hydrologic Cycle. Monthly Weather Review, 93, 769-798, doi: https://doi.org/10.1175/1520-0493(1965)093<0769:SCOAGC>2.3.CO;2
Neelin, J. D., and I. M. Held, 1987: Modeling Tropical Convergence Based on the Moist Static Energy Budget. Monthly Weather Review, 115, 3-12, doi: https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2
Neelin, J. D., and J.-Y. Yu, 1994: Modes of Tropical Variability under Convective Adjustment and the Madden–Julian Oscillation. Part I: Analytical Theory. Journal of Atmospheric Sciences, 51, 1876-1894, doi: https://doi.org/10.1175/1520-0469(1994)051<1876:Motvuc>2.0.Co;2
Neelin, J. D., and N. Zeng, 2000: A Quasi-Equilibrium Tropical Circulation Model—Formulation. Journal of the Atmospheric Sciences, 57, 1741-1766, doi: https://doi.org/10.1175/1520-0469(2000)057<1741:Aqetcm>2.0.Co;2
Neelin, J. D., O. Peters, J. W.-B. Lin, K. Hales, and C. E. Holloway, 2008: Rethinking convective quasi-equilibrium: observational constraints for stochastic convective schemes in climate models. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366, 2579-2602, doi: https://doi.org/doi:10.1098/rsta.2008.0056
Neggers, R. A. J., J. D. Neelin, and B. Stevens, 2007: Impact Mechanisms of Shallow Cumulus Convection on Tropical Climate Dynamics. Journal of Climate, 20, 2623-2642, doi: https://doi.org/10.1175/jcli4079.1
Nie, J., W. R. Boos, and Z. Kuang, 2010: Observational Evaluation of a Convective Quasi-Equilibrium View of Monsoons. Journal of Climate, 23, 4416-4428, doi: https://doi.org/10.1175/2010JCLI3505.1
O′Gorman, P. A., and M. S. Singh, 2013: Vertical structure of warming consistent with an upward shift in the middle and upper troposphere. Geophysical Research Letters, 40, 1838-1842, doi: https://doi.org/10.1002/grl.50328
Peng, J., H. Zhang, and Z. Li, 2014: Temporal and spatial variations of global deep cloud systems based on CloudSat and CALIPSO satellite observations. Advances in Atmospheric Sciences, 31, 593-603, doi: https://doi.org/10.1007/s00376-013-3055-6
Raymond, D. J., and M. J. Herman, 2011: Convective quasi-equilibrium reconsidered. Journal of Advances in Modeling Earth Systems, 3, doi: https://doi.org/10.1029/2011MS000079
Sahany, S., J. D. Neelin, K. Hales, and R. B. Neale, 2012: Temperature–Moisture Dependence of the Deep Convective Transition as a Constraint on Entrainment in Climate Models. Journal of the Atmospheric Sciences, 69, 1340-1358, doi: https://doi.org/10.1175/jas-d-11-0164.1
Santer, B. D., and Coauthors, 2005: Amplification of Surface Temperature Trends and Variability in the Tropical Atmosphere. Science, 309, 1551-1556, doi: https://doi.org/10.1126/science.1114867
Savazzi, A. C. M., C. Jakob, and A. P. Siebesma, 2021: Convective Mass-Flux From Long Term Radar Reflectivities Over Darwin, Australia. Journal of Geophysical Research: Atmospheres, 126, e2021JD034910, doi: https://doi.org/10.1029/2021JD034910
Schiro, K. A., F. Ahmed, S. E. Giangrande, and J. D. Neelin, 2018: GoAmazon2014/5 campaign points to deep-inflow approach to deep convection across scales. Proceedings of the National Academy of Sciences, 115, 4577-4582, doi: https://doi.org/10.1073/pnas.1719842115
Siebesma, A. P., and Coauthors, 2003: A Large Eddy Simulation Intercomparison Study of Shallow Cumulus Convection. Journal of the Atmospheric Sciences, 60, 1201-1219, doi: https://doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2
Singh, M. S., and P. A. O′Gorman, 2013: Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium. Geophysical Research Letters, 40, 4398-4403, doi: https://doi.org/10.1002/grl.50796
Singh, M. S., R. A. Warren, and C. Jakob, 2019: A Steady-State Model for the Relationship Between Humidity, Instability, and Precipitation in the Tropics. Journal of Advances in Modeling Earth Systems, 11, 3973-3994, doi: https://doi.org/10.1029/2019MS001686
Sobel, A. H., and J. D. Neelin, 2006: The boundary layer contribution to intertropical convergence zones in the quasi-equilibrium tropical circulation model framework. Theoretical and Computational Fluid Dynamics, 20, 323-350, doi: https://doi.org/10.1007/s00162-006-0033-y
Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The Weak Temperature Gradient Approximation and Balanced Tropical Moisture Waves. Journal of the Atmospheric Sciences, 58, 3650-3665, doi: https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2
Steiner, A. K., and Coauthors, 2020: Observed Temperature Changes in the Troposphere and Stratosphere from 1979 to 2018. Journal of Climate, 33, 8165-8194, doi: https://doi.org/10.1175/JCLI-D-19-0998.1
Stevens, B., 2005: ATMOSPHERIC MOIST CONVECTION. Annual Review of Earth and Planetary Sciences, 33, 605-643, doi: https://doi.org/10.1146/annurev.earth.33.092203.122658
Taszarek, M., J. T. Allen, M. Marchio, and H. E. Brooks, 2021: Global climatology and trends in convective environments from ERA5 and rawinsonde data. npj Climate and Atmospheric Science, 4, 35, doi: https://doi.org/10.1038/s41612-021-00190-x
Tompkins, A. M., 2001: Organization of Tropical Convection in Low Vertical Wind Shears: The Role of Water Vapor. Journal of the Atmospheric Sciences, 58, 529-545, doi: https://doi.org/10.1175/1520-0469(2001)058<0529:OOTCIL>2.0.CO;2
Xu, K.-M., and K. A. Emanuel, 1989: Is the Tropical Atmosphere Conditionally Unstable? Monthly Weather Review, 117, 1471-1479, doi: https://doi.org/10.1175/1520-0493(1989)117<1471:Ittacu>2.0.Co;2
Yano, J.-I., and R. S. Plant, 2012: Convective quasi-equilibrium. Reviews of Geophysics, 50, doi: https://doi.org/10.1029/2011RG000378
Yano, J.-I., and R. S. Plant, 2016: Generalized convective quasi-equilibrium principle. Dynamics of Atmospheres and Oceans, 73, 10-33, doi: https://doi.org/10.1016/j.dynatmoce.2015.11.001
Yu, J.-Y., and J. D. Neelin, 1997: Analytic Approximations for Moist Convectively Adjusted Regions. Journal of the Atmospheric Sciences, 54, 1054-1063, doi: https://doi.org/10.1175/1520-0469(1997)054<1054:Aafmca>2.0.Co;2
Zhang, G. J., 2009: Effects of entrainment on convective available potential energy and closure assumptions in convection parameterization. Journal of Geophysical Research: Atmospheres, 114, doi: https://doi.org/10.1029/2008JD010976
指導教授 余嘉裕 許晃雄(Jia-Yuh Yu Huang-Hsiung Hsu) 審核日期 2022-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明