參考文獻 |
Adames, Á. F., S. W. Powell, F. Ahmed, V. C. Mayta, and J. D. Neelin, 2021: Tropical Precipitation Evolution in a Buoyancy-Budget Framework. Journal of the Atmospheric Sciences, 78, 509-528, doi: https://doi.org/10.1175/JAS-D-20-0074.1
Ahmed, F., and J. D. Neelin, 2018: Reverse Engineering the Tropical Precipitation–Buoyancy Relationship. Journal of the Atmospheric Sciences, 75, 1587-1608, doi: https://doi.org/10.1175/JAS-D-17-0333.1
——, 2021: Protected Convection as a Metric of Dry Air Influence on Precipitation. Journal of Climate, 34, 3821-3838, doi: https://doi.org/10.1175/JCLI-D-20-0384.1
AIRS Science Team/Joao Teixeira 2013a: AIRS/Aqua L3 Daily Standard Physical Retrieval (AIRS+AMSU) 1 degree x 1 degree V006 (AIRX3STD), Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 02 August 2018, doi: https://doi.org/10.5067/Aqua/AIRS/DATA301
——, 2013b: AIRS/Aqua L3 Daily Support Product (AIRS+AMSU) 1 degree x 1 degree V006, Greenbelt (AIRX3SPD), MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 02 July 2021, doi: https://doi.org/10.5067/Aqua/AIRS/DATA304
——, 2013c: AIRS/Aqua L3 Monthly Support Product (AIRS+AMSU) 1 degree x 1 degree V006 (AIRX3SPM), Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 02 July 2021, doi: https://doi.org/10.5067/Aqua/AIRS/DATA322
——, 2013d: AIRS/Aqua L3 Monthly Standard Physical Retrieval (AIRS+AMSU) 1 degree x 1 degree V006 (AIRX3STM), Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 02 August 2018, doi: https://doi.org/10.5067/Aqua/AIRS/DATA319
Arakawa, A., 2004: The Cumulus Parameterization Problem: Past, Present, and Future. Journal of Climate, 17, 2493-2525, doi: https://doi.org/10.1175/1520-0442(2004)017<2493:Ratcpp>2.0.Co;2
Arakawa, A., and W. H. Schubert, 1974: Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part I. Journal of Atmospheric Sciences, 31, 674-701, doi: https://doi.org/10.1175/1520-0469(1974)031<0674:Ioacce>2.0.Co;2
Betts, A. K., 1982: Saturation Point Analysis of Moist Convective Overturning. Journal of Atmospheric Sciences, 39, 1484-1505, doi: https://10.1175/1520-0469(1982)039<1484:Spaomc>2.0.Co;2
Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quarterly Journal of the Royal Meteorological Society, 112, 677-691, doi: https://doi.org/10.1002/qj.49711247307
Bony, S., and Coauthors, 2015: Clouds, circulation and climate sensitivity. Nature Geoscience, 8, 261-268, doi: https://doi.org/10.1038/ngeo2398
Bretherton, C. S., and A. H. Sobel, 2003: The Gill Model and the Weak Temperature Gradient Approximation. Journal of the Atmospheric Sciences, 60, 451-460, doi: https://doi.org/10.1175/1520-0469(2003)060<0451:TGMATW>2.0.CO;2
Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between Water Vapor Path and Precipitation over the Tropical Oceans. Journal of Climate, 17, 1517-1528, doi: https://doi.org/10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2
Brown, R. G., and C. S. Bretherton, 1997: A Test of the Strict Quasi-Equilibrium Theory on Long Time and Space Scales. Journal of the Atmospheric Sciences, 54, 624-638, doi: https://doi.org/10.1175/1520-0469(1997)054<0624:Atotsq>2.0.Co;2
Bryan, G. H., and J. M. Fritsch, 2004: A Reevaluation of Ice–Liquid Water Potential Temperature. Monthly Weather Review, 132, 2421-2431, doi: https://doi.org/10.1175/1520-0493(2004)132<2421:Aroiwp>2.0.Co;2
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553-597, doi: https://doi.org/10.1002/qj.828
Derbyshire, S. H., I. Beau, P. Bechtold, J.-Y. Grandpeix, J.-M. Piriou, J.-L. Redelsperger, and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quarterly Journal of the Royal Meteorological Society, 130, 3055-3079, doi: https://doi.org/10.1256/qj.03.130
Durre, I., X. Yin, R. Vose, S. Applequiest, and J. Arnfield, 2016: Integrated Global Radiosonde Archive (IGRA) version 2. NOAA/National Centers for Environmental Information, accessed 29 August 2018, doi: https://doi.org/10.7289/V5X63K0Q
Emanuel, K. A., J. David Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quarterly Journal of the Royal Meteorological Society, 120, 1111-1143, doi: https://doi.org/10.1002/qj.49712051902
Fueglistaler, S., C. Radley, and I. M. Held, 2015: The distribution of precipitation and the spread in tropical upper tropospheric temperature trends in CMIP5/AMIP simulations. Geophysical Research Letters, 42, 6000-6007, doi: https://doi.org/10.1002/2015GL064966
Holloway, C. E., and J. D. Neelin, 2007: The Convective Cold Top and Quasi Equilibrium. Journal of the Atmospheric Sciences, 64, 1467-1487, doi: https://doi.org/10.1175/jas3907.1
——, 2009: Moisture Vertical Structure, Column Water Vapor, and Tropical Deep Convection. Journal of the Atmospheric Sciences, 66, 1665-1683, doi: https://doi.org/10.1175/2008JAS2806.1
——, 2010: Temporal Relations of Column Water Vapor and Tropical Precipitation. Journal of the Atmospheric Sciences, 67, 1091-1105, doi: https://doi.org/10.1175/2009JAS3284.1
Houze Jr., R. A., K. L. Rasmussen, M. D. Zuluaga, and S. R. Brodzik, 2015: The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Reviews of Geophysics, 53, 994-1021, doi: https://doi.org/10.1002/2015RG000488
Huffman, G. J., R. F. Adler, D. T. Bolvin, and E. J. Nelkin, 2010: The TRMM Multi-Satellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, M. Gebremichael, and F. Hossain, Eds., Springer Netherlands, 3-22.
Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. Journal of Hydrometeorology, 8, 38-55, doi: https://doi.org/10.1175/JHM560.1
Kuang, Z., 2008: Modeling the Interaction between Cumulus Convection and Linear Gravity Waves Using a Limited-Domain Cloud System–Resolving Model. Journal of the Atmospheric Sciences, 65, 576-591, doi: https://doi.org/10.1175/2007JAS2399.1
Kuo, H. L., 1974: Further Studies of the Parameterization of the Influence of Cumulus Convection on Large-Scale Flow. Journal of Atmospheric Sciences, 31, 1232-1240, doi: https://doi.org/10.1175/1520-0469(1974)031<1232:Fsotpo>2.0.Co;2
Kuo, Y.-H., J. D. Neelin, and C. R. Mechoso, 2017: Tropical Convective Transition Statistics and Causality in the Water Vapor–Precipitation Relation. Journal of the Atmospheric Sciences, 74, 915-931, doi: https://doi.org/10.1175/JAS-D-16-0182.1
Kuo, Y.-H., K. A. Schiro, and J. D. Neelin, 2018: Convective Transition Statistics over Tropical Oceans for Climate Model Diagnostics: Observational Baseline. Journal of the Atmospheric Sciences, 75, 1553-1570, doi: https://doi.org/10.1175/JAS-D-17-0287.1
Lin, J.-L., T. Qian, T. Shinoda, and S. Li, 2015: Is the Tropical Atmosphere in Convective Quasi-Equilibrium? Journal of Climate, 28, 4357-4372, doi: https://doi.org/10.1175/JCLI-D-14-00681.1
Manabe, S., J. Smagorinsky, and R. F. Strickler, 1965: Simulated Climatology of a General Circulation Model with a Hydrologic Cycle. Monthly Weather Review, 93, 769-798, doi: https://doi.org/10.1175/1520-0493(1965)093<0769:SCOAGC>2.3.CO;2
Neelin, J. D., and I. M. Held, 1987: Modeling Tropical Convergence Based on the Moist Static Energy Budget. Monthly Weather Review, 115, 3-12, doi: https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2
Neelin, J. D., and J.-Y. Yu, 1994: Modes of Tropical Variability under Convective Adjustment and the Madden–Julian Oscillation. Part I: Analytical Theory. Journal of Atmospheric Sciences, 51, 1876-1894, doi: https://doi.org/10.1175/1520-0469(1994)051<1876:Motvuc>2.0.Co;2
Neelin, J. D., and N. Zeng, 2000: A Quasi-Equilibrium Tropical Circulation Model—Formulation. Journal of the Atmospheric Sciences, 57, 1741-1766, doi: https://doi.org/10.1175/1520-0469(2000)057<1741:Aqetcm>2.0.Co;2
Neelin, J. D., O. Peters, J. W.-B. Lin, K. Hales, and C. E. Holloway, 2008: Rethinking convective quasi-equilibrium: observational constraints for stochastic convective schemes in climate models. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366, 2579-2602, doi: https://doi.org/doi:10.1098/rsta.2008.0056
Neggers, R. A. J., J. D. Neelin, and B. Stevens, 2007: Impact Mechanisms of Shallow Cumulus Convection on Tropical Climate Dynamics. Journal of Climate, 20, 2623-2642, doi: https://doi.org/10.1175/jcli4079.1
Nie, J., W. R. Boos, and Z. Kuang, 2010: Observational Evaluation of a Convective Quasi-Equilibrium View of Monsoons. Journal of Climate, 23, 4416-4428, doi: https://doi.org/10.1175/2010JCLI3505.1
O′Gorman, P. A., and M. S. Singh, 2013: Vertical structure of warming consistent with an upward shift in the middle and upper troposphere. Geophysical Research Letters, 40, 1838-1842, doi: https://doi.org/10.1002/grl.50328
Peng, J., H. Zhang, and Z. Li, 2014: Temporal and spatial variations of global deep cloud systems based on CloudSat and CALIPSO satellite observations. Advances in Atmospheric Sciences, 31, 593-603, doi: https://doi.org/10.1007/s00376-013-3055-6
Raymond, D. J., and M. J. Herman, 2011: Convective quasi-equilibrium reconsidered. Journal of Advances in Modeling Earth Systems, 3, doi: https://doi.org/10.1029/2011MS000079
Sahany, S., J. D. Neelin, K. Hales, and R. B. Neale, 2012: Temperature–Moisture Dependence of the Deep Convective Transition as a Constraint on Entrainment in Climate Models. Journal of the Atmospheric Sciences, 69, 1340-1358, doi: https://doi.org/10.1175/jas-d-11-0164.1
Santer, B. D., and Coauthors, 2005: Amplification of Surface Temperature Trends and Variability in the Tropical Atmosphere. Science, 309, 1551-1556, doi: https://doi.org/10.1126/science.1114867
Savazzi, A. C. M., C. Jakob, and A. P. Siebesma, 2021: Convective Mass-Flux From Long Term Radar Reflectivities Over Darwin, Australia. Journal of Geophysical Research: Atmospheres, 126, e2021JD034910, doi: https://doi.org/10.1029/2021JD034910
Schiro, K. A., F. Ahmed, S. E. Giangrande, and J. D. Neelin, 2018: GoAmazon2014/5 campaign points to deep-inflow approach to deep convection across scales. Proceedings of the National Academy of Sciences, 115, 4577-4582, doi: https://doi.org/10.1073/pnas.1719842115
Siebesma, A. P., and Coauthors, 2003: A Large Eddy Simulation Intercomparison Study of Shallow Cumulus Convection. Journal of the Atmospheric Sciences, 60, 1201-1219, doi: https://doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2
Singh, M. S., and P. A. O′Gorman, 2013: Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium. Geophysical Research Letters, 40, 4398-4403, doi: https://doi.org/10.1002/grl.50796
Singh, M. S., R. A. Warren, and C. Jakob, 2019: A Steady-State Model for the Relationship Between Humidity, Instability, and Precipitation in the Tropics. Journal of Advances in Modeling Earth Systems, 11, 3973-3994, doi: https://doi.org/10.1029/2019MS001686
Sobel, A. H., and J. D. Neelin, 2006: The boundary layer contribution to intertropical convergence zones in the quasi-equilibrium tropical circulation model framework. Theoretical and Computational Fluid Dynamics, 20, 323-350, doi: https://doi.org/10.1007/s00162-006-0033-y
Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The Weak Temperature Gradient Approximation and Balanced Tropical Moisture Waves. Journal of the Atmospheric Sciences, 58, 3650-3665, doi: https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2
Steiner, A. K., and Coauthors, 2020: Observed Temperature Changes in the Troposphere and Stratosphere from 1979 to 2018. Journal of Climate, 33, 8165-8194, doi: https://doi.org/10.1175/JCLI-D-19-0998.1
Stevens, B., 2005: ATMOSPHERIC MOIST CONVECTION. Annual Review of Earth and Planetary Sciences, 33, 605-643, doi: https://doi.org/10.1146/annurev.earth.33.092203.122658
Taszarek, M., J. T. Allen, M. Marchio, and H. E. Brooks, 2021: Global climatology and trends in convective environments from ERA5 and rawinsonde data. npj Climate and Atmospheric Science, 4, 35, doi: https://doi.org/10.1038/s41612-021-00190-x
Tompkins, A. M., 2001: Organization of Tropical Convection in Low Vertical Wind Shears: The Role of Water Vapor. Journal of the Atmospheric Sciences, 58, 529-545, doi: https://doi.org/10.1175/1520-0469(2001)058<0529:OOTCIL>2.0.CO;2
Xu, K.-M., and K. A. Emanuel, 1989: Is the Tropical Atmosphere Conditionally Unstable? Monthly Weather Review, 117, 1471-1479, doi: https://doi.org/10.1175/1520-0493(1989)117<1471:Ittacu>2.0.Co;2
Yano, J.-I., and R. S. Plant, 2012: Convective quasi-equilibrium. Reviews of Geophysics, 50, doi: https://doi.org/10.1029/2011RG000378
Yano, J.-I., and R. S. Plant, 2016: Generalized convective quasi-equilibrium principle. Dynamics of Atmospheres and Oceans, 73, 10-33, doi: https://doi.org/10.1016/j.dynatmoce.2015.11.001
Yu, J.-Y., and J. D. Neelin, 1997: Analytic Approximations for Moist Convectively Adjusted Regions. Journal of the Atmospheric Sciences, 54, 1054-1063, doi: https://doi.org/10.1175/1520-0469(1997)054<1054:Aafmca>2.0.Co;2
Zhang, G. J., 2009: Effects of entrainment on convective available potential energy and closure assumptions in convection parameterization. Journal of Geophysical Research: Atmospheres, 114, doi: https://doi.org/10.1029/2008JD010976 |