博碩士論文 91522005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:92 、訪客IP:18.117.107.78
姓名 凌啟銘(Chi-Ming Ling)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 以適應性背景相減法偵測及追蹤移動物體
(Motion Object Detection and Tracking Based on Adaptive Background Subtraction)
相關論文
★ 適用於大面積及場景轉換的視訊錯誤隱藏法★ 虛擬觸覺系統中的力回饋修正與展現
★ 多頻譜衛星影像融合與紅外線影像合成★ 腹腔鏡膽囊切除手術模擬系統
★ 飛行模擬系統中的動態載入式多重解析度地形模塑★ 以凌波為基礎的多重解析度地形模塑與貼圖
★ 多重解析度光流分析與深度計算★ 體積守恆的變形模塑應用於腹腔鏡手術模擬
★ 互動式多重解析度模型編輯技術★ 以小波轉換為基礎的多重解析度邊線追蹤技術(Wavelet-based multiresolution edge tracking for edge detection)
★ 基於二次式誤差及屬性準則的多重解析度模塑★ 以整數小波轉換及灰色理論為基礎的漸進式影像壓縮
★ 建立在動態載入多重解析度地形模塑的戰術模擬★ 以多階分割的空間關係做人臉偵測與特徵擷取
★ 以小波轉換為基礎的影像浮水印與壓縮★ 外觀守恆及視點相關的多重解析度模塑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 一個自動監視追蹤系統在保全監視的應用上扮演了一個重要的角色。在本論文的研究中,我們發展了一個即時監視追蹤系統來追蹤移動的物體;例如,人、動物、車輛等。
我們的即時監視追蹤系統分成三個階段。第一階段是利用背景相減法偵測移動的影像點。在這個方法中,我們建立一個適應性的背景,這個背景能夠解決亮度改變及凌亂物件重複移動的問題。第二階段是移除陰影及雜訊,以減少對系統準確性的影響。第三階段是利用前景物件的色彩及形狀去構建一個前景物件,並且利用前景物件的特徵值比對、追蹤、及預測移動物件的下一個位置。
在實驗中,我們考慮到幾種不同的天氣;例如,晴天、陰天、多雲、雨天、黃昏、和夜晚,及不同的背景;例如,建築物、樹葉、道路等。從實驗的結果中,我們發現我們的系統都能在不同的天氣和不同的環境中準確的追蹤各種移動物件。
摘要(英) An automatic surveillance tracking system plays an important role in security applications. In this thesis, we develop a real-time surveillance system for tracking moving objects, like people, animals, vehicles, etc.
Our system consists of three parts. In the first part, we use the background subtraction technique to detect the moving pixels. In the method, we build an adaptive background to deal with the problems of lighting change, and repetitive motions from clutter. In the second part, we remove the shadow and noise in the images to improve the system accuracy. In the third part, we construct the foreground objects with color and shape information. We also use foreground objects’ characteristic to match, track, and predict the position of the moving object.
In the experiments, we consider several different weather conditions such as sunny, cloudy, dusky, rainy hours, and night, and different backgrounds like building, tree leaves, roads, and monitor screens. From the experimental results, we find that the proposed approach can accurately detect and track different moving objects in the different weather conditions, and environments.
關鍵字(中) ★ 背景相減
★ 追蹤
★ 移動物體偵測
關鍵字(英) ★ background subtraction
★ track
★ motion detection
論文目次 摘要 I
誌謝 II
目錄 III
第一章 緒論 一
第二章 相關研究 二
第三章 移動物體的偵測 三
第四章 追蹤 四
第五章 實驗 五
第六章 結論及未來工作 六
附錄 英文版論文 七
參考文獻 [1] Aggarwal, J. K. and Q. Cai, “Human motion analysis: a review,” Computer Vision and Image Understanding, vol.73, no.3, pp.428-440, 1999.
[2] Baumberg, A. M. and D. C. Hogg, “An efficient method for contour tracking using active shape models,” in Proc. IEEE Workshop on Motion of Non-Rigid and Articulated Objects, Austin, TX, Nov.11-12, 1994, pp.194-199.
[3] BenAbdelkader, C., P. Burlina, and L. Davis, “Single camera multiplexing for multi-target tracking,” in Proc. IEEE Int’l Conf. on Image Analysis and Processing, Venice, Italy, Sept.27-29, 1999, pp.1140-1143.
[4] Bobick, A. and J. Davis, “Real-time recognition of activity using temporal templates,” in Proc. 3rd IEEE Workshop on Applications of Computer Vision, Sarasota, FL, Dec.6-9, 1996, pp.39-42.
[5] Boult, T.E., R. Micheals, X. Gao, P. Lewis, C. Power, W. Yin, and A. Erkan, “Frame-rate omnidirectional surveillance and tracking of camouflaged and occluded targets,” in Proc. 2nd IEEE Workshop on Visual Surveillance, Fort Collins, CO, Jun.26, 1999, pp.48-55.
[6] Br?mond, F. and M. Thonnat, “Tracking multiple nonrigid objects in video sequences,” IEEE Trans. on Circuits and System for Video Technology, vol.8, no.5, pp.585-591, Sept. 1998.
[7] Buxton, H. and S. Gong, “Visual surveillance in a dynamic and uncertain World,” Artificial Intelligence, Special volume on computer vision, vol.78, no.1-2, Oct. 1995.
[8] C?dras, C. and M. Shah, “Motion-based recognition: a survey,” Image and Vision Computing, vol.13, no.2, pp.129-155, March 1995.
[9] Cohen, I. and G. Medioni, “Detecting and tracking moving objects for video surveillance,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Fort Collins, CO, Jun.23-25, 1999, pp.325.
[10] Collins, R. T., A. J. Lipton, and T. Kanade, A System for Video Surveillance and Monitoring, Technical Report, CMU-RI-TR-00-12, Robotics Institute, Carnegie Mellon University, May 2000.
[11] Collins, R. T., A. J. Lipton, and T. Kanade, “Introduction to the special section on video surveillance,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.22, no.8, pp.745-746, Aug. 2000.
[12] Cootes, T. F. and C. J. Taylor, “Active shape models – ‘smart snakes’,” in Proc. British Machine Vision Conf., Springer-Verlag, 1992, pp.266-275.
[13] Cucchiara, R. C. Grana, G. Neri, M. Piccardi, and A. Prati, “The sakbot system for moving object detection and tracking,” in Video-based Surveillance Systems: Computer Vision and Distributed Processing (Part II - Detection and Tracking), Kluwer Academic Publishers, UK, 2001, pp.145-158.
[14] Cutler, R. and L. Davis, “View-based detection and analysis of periodic motion,” in Proc. 14th IEEE Int’l Conf. on Pattern Recognition, Brisbane, Australia, Aug.16-20, 1998, pp.495-500.
[15] Davis, J. W. and A. F. Bobick, “The representation and recognition of human movement using temporal templates,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, Jun.17-19, 1997, pp.928-934.
[16] Elgammal, A., D. Harwood, and L. Davis, “Non-parametric model for background subtraction,” in Proc. 6th European Conf. on Computer Vision, Dublin, Ireland, June/July 2000, pp.751-767.
[17] Freer, J. A., B. J. Beggs, H. L. Fernandez-Canque, F. Chevrier, and A. Goryashko, “Automatic intruder detection incorporating intelligent scene monitoring with video surveillance,” in Proc. European Conf. on Security and Detection, London, UK, April 28-30, 1997, pp.109-113.
[18] Gavrila, D. M, “The analysis of human motion and its application for visual surveillance,” in Proc. 2nd IEEE Int’l Workshop on Visual Surveillance, Fort Collins, CO, 1999, pp.3-5.
[19] Gavrila, D. M, “The visual analysis of human movement: a survey,” Computer Vision and Image Understanding, vol.73, no.1, pp.82-98, Jan. 1999.
[20] Halevi, G. and D. Weinshal, “Motion of disturbances: detection and tracking of multi-body non-rigid motion,” in Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, Jun.17-19, 1997, pp.897-902.
[21] Haritaoglu, I., D. Harwood, and L. Davis, “Hydra: multiple people detection and tracking using silhouettes,” in Proc. 2nd IEEE Workshop on Visual Surveillance, Fort Collins, CO, Jun.26, 1999, pp.6-13.
[22] Haritaoglu, I., D. Harwood, and L. Davis, “W4: real-time surveillance of people and their activities,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.22, no.8, pp. 809-830, Aug. 2000.
[23] Haritaoglu, I., D. Harwood, and L. Davis, “Active outdoor surveillance,” in Proc. IEEE Int’l Conf. on Image Analysis and Processing, Venice, Italy, Sept.27-29, 1999, pp.1096-1099.
[24] Heikkil?, J. and O. Silv?n, “A real-time system for monitoring of cyclists and pedestrians,” in Proc. 2nd IEEE Workshop on Visual Surveillance, Fort Collins, CO, Jun.26, 1999, pp.74-81.
[25] Hongeng, S., F. Br?mond, and R. Nevatia, “Representation and optimal recognition of human activities,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Hilton Head Island, SC, Jun.13-15, 2000, pp.818-825.
[26] Horprasert, T., D. Harwood, and L. Davis, “A robust background subtraction and shadow detection,” in Proc. ACCV'2000, Taipei, Taiwan, Jan. 2000, pp.983-988.
[27] Ivanov, Y. A. and A. F. Bobick, “Recognition of multi-agent interaction in video surveillance,” in Proc. 7th IEEE Int’l Conf. on Computer Vision, Kerkyra, Greece, Sept.20-27, 1999, pp.169-176.
[28] Ivanov, Y. A., C. Stauffer, and A. F. Bobick, “Video surveillance of interactions,” in Proc. 2nd IEEE Workshop on Video Surveillance, Fort Collins, CO, Jun.26, 1999, pp.82-89.
[29] Kettnaker, V. and M. Brand, “Minimum-entropy models of scene activity,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Fort Collins, CO, Jun.23-25, 1999, pp.286 vol.1.
[30] Lipton, A.J., Fujiyoshi, H., and Patil, R.S. “Moving target classification and tracking from real-time video,” in Proc. Fourth IEEE Workshop on Applications of Computer Vision, Princeton, NJ, Oct.19-21, 1998, pp.8-14.
[31] Lu, W. and Y. Tan, “A color histogram based people tracking system,” in Proc. IEEE Int’l Sym. on Circuits and Systems, Sydney, Australia, May 6-9, 2001, pp.137-140.
[32] Mikic, I., P. Cosman, G. Kougut, and M.M. Trivedi, “Moving shadow and object detection in traffic scenes,” in Proc. 15th Int’l Conf’ on Pattern Recognition, Barcelona, Spain, Sept.3-7, 2000, pp.321-324.
[33] Oliver, N. M., B. Rosario, and A. P. Pentland, “A bayesian computer vision system for modeling human interactions,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.22, no.8, pp.831-843, Aug. 2000.
[34] Olson, T. and F. Brill, “Moving Object Detection and Event Recognition algorithm for Smart Cameras,” in Proc. DARPA Image Understanding Workshop, New Orleans, May 1997, pp.159-175.
[35] Regazzoni, C., V. Ramesh, G. L. Foresti, “Special issue on video communications, processing, and understanding for third generation surveillance systems,” Proceeding of the IEEE, vol.89, no.10, Oct. 2001.
[36] Rehg, J. M., M. Loughlin, K. Waters, “Vision for a smart kiosk,” IEEE Conf. on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, Jun.17-19, 1997, pp.690-696.
[37] Remagnino, P., A. Baumberg, T. Grove, D. Hogg, T. Tan, A. Worrall, K. Baker, “An integrated traffic and pedestrian model-based vision system,” in Proc. BMVC '97, Univ. of Essex, vol.2, 1997, pp.380-398.
[38] Rigoll, G., B. Winterstein, S. M?ller, “Robust person tracking in real scenarios with non-stationary background using a statistical computer vision approach,” in Proc. 2nd IEEE Workshop on Visual Surveillance, Fort Collins, CO, Jun.26, 1999, pp.41-47.
[39] Sechidis, L. A, P. Patias, V. Tsioukas, “Low-level tracking of multiple objects,” in Proc. Workshop on Non-rigid Motion, Nov.1994, pp.77-82.
[40] Stauffer, C. and W. E. L. Grimson, “Adaptive background mixture models for real-time tracking,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Fort Collins, CO, Jun.23-25, 1999, pp.252 vol.2.
[41] Tou, J.T. and R.C. Gonazalez, Pattern Recognition Principles, Addison-Wesley, Canada, 1974, Ch.3, pp.90-93.
[42] Wada, T. and T. Matsuyama, “Appearance sphere: background model for pan-tilt-zoom camera,” in Proc. 13th Int’l Conf. on Pattern Recognition, Vienna, Austria, Aug.25-29, 1996, pp.718-722.
[43] Welch, G. and G. Bishop, An Introduction to The Kalman Filter, Technical Report, Department of Computer Science, University of North Carolina at Chapel Hill, 1995.
[44] Wren, C. R., A. Azarbayejani, T. Darrell, and A.P. Pentland, “Pfinder: real-time tracking of the human body,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.19, no.7, pp.780-785, July 1997.
指導教授 曾定章(Din-Chang Tseng) 審核日期 2004-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明