博碩士論文 108521118 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:85 、訪客IP:3.135.184.186
姓名 劉承軒(Cheng-Hsuan Liu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 一個高效的老化偵測器部屬策略: 基於生成對抗網路的設計方法
(An Efficient Aging Monitor Deployment Strategy: A Generative Adversarial Network Based Approach)
相關論文
★ 晶圓圖之網格及稀疏缺陷樣態辨識★ 晶圓圖提取特徵參數錯誤樣態分析
★ 使用聚類過濾策略和 CNN 計算識別晶圓圖瑕疵樣態★ 新建晶圓圖相似性門檻以強化相似程度辨別能力
★ 一種可動態重新配置的4:2近似壓縮器用於補償老化★ 一個可靠的靜態隨機存取記憶體內運算結構: 設計指南與耐老化策略研究
★ 考慮電壓衰退和繞線影響以優化電路時序之電源供應網絡精煉策略★ 適用於提高自旋轉移力矩式磁阻隨機存取記憶體矩陣可靠度之老化偵測與緩解架構設計
★ 8T 靜態隨機存取記憶體之內積運算引擎的老化威脅緩解策略: 從架構及運算角度來提出解決的方法★ 用於響應穩定性的老化感知平行掃描鏈PUF設計
★ 8T靜態隨機存取記憶體運算的老化檢測和容忍機制:適用於邏輯和 MAC 運算的應用★ 使用擺置後的設計特徵及極限梯度提升演算法預測繞線後的繞線需求
★ 基於強化學習的晶片佈局規劃的卷積神經網路與圖神經網路融合架構★ 用於佈線後階段電壓降優化的強化學習框架
★ 多核心系統的老化與瞬態錯誤感知任務部署策略:壽命延長且節能的框架★ 基於圖神經網絡(GNN)的內部節點控制(INC)和輸入向量控制(IVC)協同優化用於老化緩解
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-12-15以後開放)
摘要(中) 隨著半導體製程科技的持續進步,現今的晶片已可以在很小的面積中,
進行複雜的資料處理與運算。然而,隨著晶片面積的縮小,老化效應對於晶
片的可靠度造成了很大的威脅。其中,負偏壓溫度不穩定性(NBTI) 為影響
最為嚴重的老化效應之一。伴隨著晶片長時間的使用,NBTI 會使 P 型電晶
體的閥值電壓慢慢上升,進而導致其訊號傳遞速度延遲。若此訊號傳遞延遲
超出原本所制定的規格,將有可能運算結果發生錯誤,進而導致晶片的功能
性錯誤。為了避免此現象的發生,我們需要在晶片運行期間得知晶片的老化
狀況,以進行即時的校正處理。因此,在過去的研究中,已有研究者提出了
在晶片中放置老化偵測器,以便進行即時監測,並在老化發生時,做出適當
的處置來避免功能性錯誤的發生。然而,由於擺置偵測器會增加晶片面積及
功耗,因此一個晶片中能擺置的偵測器數量是有限的。在過去的研究中,大
多數的研究者僅專注於將偵測器放在電路延遲最長的關鍵路徑(critical path)
上,以確保能偵測最差狀況(worst case)的訊號傳遞延遲。然而,關鍵路徑會
隨著晶片的老化過程而有所改變,若以晶片健康時之時序分析結果為依據,
來決定關鍵路徑並進行偵測器擺放,則可能在晶片老化後,無法準確地反映
晶片最嚴重的老化狀況。為了讓偵測器放置的位置更精確,其中一個做法便
是在設計時(design time)針對不同的老化程度(aging situation)進行模擬
(simulation),並透過模擬後的結果得到不同老化狀態下的關鍵路徑,並以此
為依據來進行偵測器的布局。雖然這樣所得到的布局結果能準確的反應電
路老化狀況,但對電路進行精確的老化模擬將耗費大量時間。因此,這樣的
方法將無法被使用現在今常見的大型電路中。
為了解決上述的問題,在此論文中,我們提出一了使用機器學習的老化
偵測器佈局架構,來有效率的進行老化偵測器之佈局。在我們提出的架構中,
III
雖也是依據不同老化程度的模擬結果進行老化偵測器之布局,但我們透過
生成對抗網路(GAN)在短時間中產生大量的老化模擬結果,以取代冗長的模
擬過程,來大幅度減低上述大量的老化模擬所需的時間。為了能讓老化資訊
與 GAN 進行互動,我們開發了資料轉換方法,讓老化資訊能被圖像化並作
為 GAN 的訓練資料,而經由適當訓練後的 GAN 所產生的輸出,亦能透過
我們的轉換方法適當的逆轉換為老化資訊。最後,我們提出一老化偵測器之
布局演算法,透過適當的使用逆轉換後的老化資訊進行布局。實驗結果顯示,
我們的方法除了將能精確的進行布局偵測器,以成功偵測老化後的時序錯
誤外,並透過機器學習的方式,大幅度減低上述大量的老化模擬所需的時間。
我們的偵測器佈局方法可以達到最高 100%時序錯誤偵測率,並且相比於其
他的老化偵測器部屬方法,我們可提升 30.77%的時序錯誤偵測率。更重要
的是,我們透過大量減少老化模擬的時間,來讓偵測器部屬更有效率,與之
前的研究相比,最多可以加速 330 倍的時間。
摘要(英) With the continuous shrinking of CMOS technologies, even a single IC can
perform complex computations in a tiny chip area. However, along with the
downscale of the circuit area, aging effects become a non-negligible reliability
threat. Amount all aging effects, Negative Bias Temperature Instability (NBTI) is
one of the most serious agine effects in nanoscale technology. The NBTI will
increases the threshold voltage of pMOS transistors along with the continuous
“ON” stress, and therefore potentially increase the propagation delay. If the
propagation delay on a critical path violates the timing requirements in the
specification, it may lead to timing failure or even malfunction. In order to avoid
the unacceptable situation, it is important to monitor the aging situation during
circuit operation and provide necessary calibrations. Therefore, in previous works
the concept of using aging sensors to provide real-time monitoring as well as the
applying appropriate tolerance mechanism when the aging occurs has been
proposed. However, the number of aging sensors can be placed in a chip is limited
due to the area overhead. In the previous works, aging monitors are usually
deployed on the end of the critical paths to ensure the worst-case aging situation
can be successfully captured. However, the critical path may vary after circuit
aging. Simply deploying aging sensors with respect to the critical paths obtained
from health circuit analysis may be unable to reflect the real aging situation. One
of the possible approaches to accurately deploy the aging sensors is to perform
detailed aging simulation under different aging situation at design time, and figure
out the potential critical paths under different aging situations. After that, the
aging sensors are deployed based on the above information. Although the
proposed approach can successfully catch the aging situation, the unacceptable
simulation time makes the method impractical for larger circuits. Therefore, an
efficient aging sensor deployment methodology is in demand.
V
To solve the above problem, in this dissertation, we propose a machine
learning based aging monitor deployment framework to efficiently deploy aging
sensors. In out framework we employ the similar concept that deploying aging
sensors based on detailed aging simulation under different aging situations, but
we apply Generative Adversarial Network (GAN) which replaces tedious detailed
simulations and generates a large amount of simulations results to significantly
reduce the execution time. To translate the aging information to and out of GAN,
we propose a data transform method to image the aging information back and
forth. Finally, we propose an aging sensor placement algorithm based on the aging
information provided by GAN. Experimental results show that our framework can
efficiently and accurately deploy aging sensors by reaching 100% timing failure
detection rate, a 30.77% improvement compare to a previous work. Moreover, a
330x speed up can also be conducted compare to a previous work.
關鍵字(中) ★ 晶片老化
★ 感測器
★ 機器學習
★ 晶片布局
關鍵字(英)
論文目次 摘要 II
Abstract IV
誌謝 VI
Table of Contents VII
Table of Figures IX
Table of Tables X
Chapter 1 Introduction 1
1.1. Motivation 1
1.2. Contributions 6
Chapter 2 Preliminary 8
2.1. NBTI and NBTI model 8
2.2. Timing Margin Detector 10
2.3. Aging monitor deployment 12
Chapter 3 Problem Formulation 15
3.1. A motivational example 15
3.2. Formal problem formulation 15
Chapter 4 GAN Based Aging Monitor Deployment Framework 17
4.1. Overall framework 17
4.2. Aging transformer 21
4.3. GAN based aging distribution generation 23
4.4. Inversely transform of the Output maps 26
4.5. Aging monitor deployment algorithm 26
Chapter 5 Experimental Results 28
5.1. Environment setting 28
5.2. GAN similarity comparison 28
5.3. Timing failure detection rate comparison 33
5.4. Runtime comparison 34
Chapter 6 Conclusions 36
Reference 37
參考文獻 [1] M. Agarwal, et al., "Circuit Failure Prediction and Its Application to Transistor Aging," 25th IEEE VLSI Test Symposium (VTS′07), 2007, pp. 277-286, doi: 10.1109/VTS.2007.22.
[2] A. Amouri, et al., “A Low-Cost Monitor for Aging and Late Transitions Detection in Modern FPGAs.” In Proceedings of the 2011 21st International Conference on Field Programmable Logic and Applications (FPL ′11). IEEE Computer Society, USA, 329–335.
[3] N.P. Aryan, et al., “Monitoring concepts for degradation effects in digital CMOS Circuits.” Technische Universität München, Diss., 2015
[4] M. M. Alam, et al., "Recycled FPGA Detection Using Exhaustive LUT Path Delay Characterization and Voltage Scaling," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 12, pp. 2897-2910, Dec. 2019, doi: 10.1109/TVLSI.2019.2933278.
[5] D. Blaauw et al., "Razor II: In Situ Error Detection and Correction for PVT and SER Tolerance," 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, 2008, pp. 400-622, doi: 10.1109/ISSCC.2008.4523226.
[6] H.C. Chang, et al,. “Selective Monitor Placement for Cost-Effective Online Aging Monitoring and Resilience.” In Proceedings of the 2020 International Symposium on Physical Design (ISPD ′20). Association for Computing Machinery, New York, NY, USA, 95–102.
[7] S. M. Ebrahimipour, et al., "Aadam: A Fast, Accurate, and Versatile Aging-Aware Cell Library Delay Model using Feed-Forward Neural Network," 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD), 2020, pp. 1-9.
[8] F. Firouzi, et al., “Aging- and Variation-Aware Delay Monitoring Using Representative Critical Path Selection.” ACM Trans. Des. Autom. Electron. Syst. 20, 3, Article 39 (June 2015), 23 pages.
[9] F. Firouzi, et al., "Representative critical-path selection for aging-induced delay monitoring," 2013 IEEE International Test Conference (ITC), 2013, pp. 1-10, doi: 10.1109/TEST.2013.6651924.
[10] M. I. Goodfellow, et al., “Generative adversarial nets,” in Advances in neural information processing systems, 2014.
[11] C. Liu, et al. "Efficient observation point selection for aging monitoring," 2015 IEEE 21st International On-Line Testing Symposium (IOLTS), 2015, pp. 176-181, doi: 10.1109/IOLTS.2015.7229855.
[12] C. V. Martins et al., "Adaptive Error-Prediction Flip-flop for performance failure prediction with aging monitors," 29th VLSI Test Symposium, 2011, pp. 203-208, doi: 10.1109/VTS.2011.5783784.
[13] S. Mishra, et al. "In situ monitors for product reliability monitoring. " Proc SPIE 2002;4755:10–9.A. Thirunavukkarasu et al., "Device to Circuit Framework for Activity-Dependent NBTI Aging in Digital Circuits," in IEEE Transactions on Electron Devices,2019.
[14] Y. Miyake, et al., "Path Delay Measurement with Correction for Temperature And Voltage Variations," 2020 IEEE International Test Conference in Asia (ITC-Asia), 2020, pp. 112-117, doi: 10.1109/ITC-Asia51099.2020.00031.
[15] M. Omaña, et al., "Low Cost NBTI Degradation Detection and Masking Approaches," in IEEE Transactions on Computers, vol. 62, no. 3, pp. 496-509, March 2013, doi: 10.1109/TC.2011.246.
[16] On-line resource https://www.tensorflow.org
[17] B. C. Paul, et al., "Temporal Performance Degradation under NBTI: Estimation and Design for Improved Reliability of Nanoscale Circuits," Proceedings of the Design Automation & Test in Europe Conference, 2006, pp. 1-6, doi: 10.1109/DATE.2006.244119.
[18] Predictive Technology Model (PTM). [Online]. Available http://www.ptm.asu.edu, accessed Mar. (2013).
[19] V. Rathore, et al., "Life Guard: A Reinforcement Learning-Based Task Mapping Strategy for Performance-Centric Aging Management," 2019 56th ACM/IEEE Design Automation Conference (DAC), 2019, pp. 1-6.
[20] T. Sato, et al., "A Simple Flip-Flop Circuit for Typical-Case Designs for DFM," 8th International Symposium on Quality Electronic Design (ISQED′07), 2007, pp. 539-544, doi: 10.1109/ISQED.2007.23.
[21] D. Sengupta, et al., "Predicting circuit aging using ring oscillators," 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC), 2014, pp. 430-435, doi: 10.1109/ASPDAC.2014.6742929.
[22] K. Shimamura, et al., “Real Circuit Delay Measurement Method by Variable Frequency Operation with On-Chip Fine Resolution Oscillator”, IPSJ Transactions on System LSI Design Methodology.
[23] A. Thirunavukkarasu et al., "Device to Circuit Framework for ActivityDependent NBTI Aging in Digital Circuits," in IEEE Transactions on Electron Devices, vol. 66, no. 1, pp. 316-323, Jan. 2019.
[24] R. Vattikonda, et al., "Modeling and minimization of PMOS NBTI effect for robust nanometer design," 2006 43rd ACM/IEEE Design Automation Conference, 2006, pp. 1047-1052, doi: 10.1145/1146909.1147172.
[25] W. Wang, et al., "The Impact of NBTI Effect on Combinational Circuit: Modeling, Simulation, and Analysis," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 18, no. 2, pp. 173-183, Feb. 2010, doi: 10.1109/TVLSI.2008.2008810.
[26] X. Wang, et al., "Path-RO: A novel on-chip critical path delay measurement under process variations," 2008 IEEE/ACM International Conference on Computer-Aided Design, 2008, pp. 640-646, doi: 10.1109/ICCAD.2008.4681644.
[27] L. Zhang, et al., "Scheduled voltage scaling for increasing lifetime in the presence of NBTI," 2009 Asia and South Pacific Design Automation Conference, 2009, pp. 492-497, doi: 10.1109/ASPDAC.2009.4796528.
[28] Z. Zhou et al., "Congestion-aware Global Routing using Deep Convolutional Generative Adversarial Networks," 2019 ACM/IEEE 1st Workshop on Machine Learning for CAD (MLCAD), 2019, pp. 1-6, doi: 10.1109/MLCAD48534.2019.9142082.
指導教授 陳聿廣(Yu-Guang Chen) 審核日期 2021-12-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明