參考文獻 |
[1] Qorvo. “GaN: A Critical Technology for 5G,” white paper, Dec. 2016.
[2] G. Nikandish, R. B. Staszewski and A. Zhu, "Design of highly linear broadband continuous mode GaN MMIC power amplifiers for 5G," IEEE Access, vol. 7, pp. 57138-57150, 2019.
[3] G. R. Nikandish, R. B. Staszewski and A. Zhu, "Broadband fully integrated GaN power amplifier with minimum-inductance BPF matching and two-transistor AM-PM compensation," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67,no. 12, pp. 4211-4223, Dec. 2020.
[4] B. Liu, M. Mao, D. Khanna, P. Choi, C. C. Boon and E. A. Fitzgerald, "A highly efficient fully integrated GaN power amplifier for 5-GHz WLAN 802.11ac application," IEEE Microwave and Wireless Components Letters, vol. 28, no. 5, pp. 437-439, May 2018.
[5] R. Joshi, M. -H. Liu and S. S. H. Hsu, "A high efficiency compact class F GaN MMIC power amplifier for 5G applications," in 2020 50th European Microwave Conference (EuMC), 2021, pp. 1103-1106.
[6] G. R. Nikandish, R. B. Staszewski and A. Zhu, "A fully integrated reconfigurable multimode Class-F2,3 GaN power amplifier," IEEE Solid-State Circuits Letters, vol. 3, pp. 270-273,2020.
[7] R. Quaglia, V. Camarchia, M. Pirola, J. J. M. Rubio and G. Ghione, "Linear GaN MMIC combined power amplifiers for 7-GHz microwave backhaul," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 11, pp. 2700-2710, Nov. 2014.
[8] G. Nikandish, R. B. Staszewski and A. Zhu, "A broadband continuous class-F GaN MMIC
PA using multi-resonance matching network," in 2019 14th European Microwave Integrated Circuits Conference (EuMIC), 2019, pp. 108-111.
[9] C. H. Kim and B. Park, "Fully-integrated two-stage GaN MMIC doherty power amplifier for LTE small cells," IEEE Microwave and Wireless Components Letters, vol. 26, no. 11,
pp. 918-920, Nov. 2016.
[10] G. Nikandish, R. B. Staszewski and A. Zhu, "Bandwidth enhancement of GaN MMIC doherty power amplifiers using broadband transformer-based load modulation network," IEEE Access, vol. 7, pp. 119844-119855, 2019.
[11] S. C. Cripps, P. J. Tasker, A. L. Clarke, J. Lees, and J. Benedikt, “On the continuity of high efficiency modes in linear RF power amplifiers,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 10, pp. 665–667, Oct. 2009.
[12] S. C. Cripps, RF Power Amplifiers for Wireless Communications, 2nd ed. Boston, MA: Artech, 2006.
[13] P. Wright, J. Lees, J. Benedikt, P. J. Tasker, and S. C. Cripps, "A methodology for realizing high efficiency class-J in a linear and broadband PA," IEEE Trans. Microwave Theory Techniques, vol. 57, no. 12, pp. 3196–3204, Dec.2009.
[14] V. Carrubba et al., “The continuous class-F mode power amplifier,” in Proc. Eur. Microw. Conf., Sep. 2010, pp. 1674–1677.
[15] J. H. Kim, S. J. Lee, B. H. Park, S. H. Jang, J. H. Jung, and C. S. Park, “Analysis of highefficiency power amplifier using second harmonic manipulation: Inverse class-F/J amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 8, pp. 2024–2036, Aug. 2011.
[16] J. A. Reynoso-Hernández et al., "A new method for extracting Ri and Rgd of the intrinsic transistor model of GaN HEMT based on extrema points of intrinsic Y-parameters," 2015 IEEE MTT-S International Microwave Symposium, 2015, pp. 1-3
[17] B. Liu, M. Mao, C. C. Boon, P. Choi, D. Khanna and E. A. Fitzgerald, "A fully integrated class-J GaN MMIC power amplifier for 5-GHz WLAN 802.11ax application," IEEE Microwave and Wireless Components Letters, vol. 28, no. 5, pp. 434-436, May 2018.
[18] H. Xie, Y. J. Cheng, Y. R. Ding, L. Wang and Y. Fan, "A C-band high-efficiency power amplifier MMIC with second-harmonic control in 0.25 μm GaN HEMT technology," IEEE Microwave and Wireless Components Letters, vol. 31, no. 12, pp. 1303-1306, Dec. 2021.
[19] R. Giofrè, P. Colantonio and F. Giannini, "A design approach to maximize the efficiency vs. linearity trade-off in fixed and modulated load GaN power amplifiers," IEEE Access,vol. 6, pp. 9247-9255, 2018.
[20] G. R. Nikandish, R. B. Staszewski and A. Zhu, "Unbalanced power amplifier: An architecture for broadband back-off efficiency enhancement," IEEE Journal of Solid-State Circuits, vol. 56, no. 2, pp. 367-381, Feb. 2021.
[21] C. Lin and H. Chang, "A broadband injection-locking class-E power amplifier," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 10, pp. 3232-3242, Oct.
2012.
[22] 3GPP TS 38.101-1 V15.9.0, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; User Equipment (UE) radio transmission and reception;
Part 1: Range 1 Standalone, Apr. 2020.
[23] K. K. Sessou and N. M. Neihart, "An integrated 700–1200-MHz class-F PA with tunable harmonic terminations in 0.13-μm CMOS," IEEE Transactions on Microwave Theory and
Techniques, vol. 63, no. 4, pp. 1315-1323, April 2015.
[24] J. Enomoto et al., "AC-stacked power amplifier for 5G mobile handset applications in band n77," 2020 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2020, pp. 73-75
[25] Y. Dong, L. Mao and S. Xie, "Fully integrated class-J power amplifier in standard CMOS technology," IEEE Microwave and Wireless Components Letters, vol. 27, no. 1, pp. 64-66,
Jan. 2017.
[26] S. Pornpromlikit, J. Jeong, C. D. Presti, A. Scuderi and P. M. Asbeck, "A watt-level stacked-FET linear power amplifier in silicon-on-insulator CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 1, pp. 57-64, Jan. 2010.
[27] H. Dabag, B. Hanafi, F. Golcuk, A. Agah, J. F. Buckwalter and P. M. Asbeck, "Analysis and design of stacked-FET millimeter-wave power amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1543-1556, April 2013.
[28] H. Jia, C. C. Prawoto, B. Chi, Z. Wang and C. P. Yue, "A full Ka-band power amplifier with 32.9% PAE and 15.3-dBm power in 65-nm CMOS," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 9, pp. 2657 2668, Sept. 2018.
[29] C. Li, C. Kuo and M. Kuo, "A 1.2-V 5.2-mW 20–30-GHz wideband receiver front-end in 0.18 μm CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 11, pp. 3502-3512, Nov. 2012.
[30] Park, J. L. Woo, U. Kim, and Y. Kwon, “Broadband CMOS stacked RF power amplifier using reconfigurable interstage network for wideband envelope tracking,” IEEE Trans.Microw. Theory Techn., vol. 63, no. 4, pp. 1174–1185, Apr. 2015.
[31] I. Aoki, S. D. Kee, D. B. Rutledge and A. Hajimiri, "Distributed active transformer-a new power-combining and impedance-transformation technique," IEEE Transactions on
Microwave Theory and Techniques, vol. 50, no. 1, pp. 316-331, Jan. 2002
[32] V. Kiran, "ACPR reduction for better power efficiency using adaptive DPD," in 2016 International Conference on Communication and Signal Processing (ICCSP), 2016, pp.
0495-0498.
[33] M. V. Deepak Nair, R. Giofre, P. Colantonio and F. Giannini, "Effects of digital predistortion and crest factor reduction techniques on efficiency and linearity trade-off in class AB GaN-PA," in 2015 European Microwave Conference (EuMC), 2015, pp. 1128-1131.
[34] H. -W. Choi, S. Choi, J. -T. Lim and C. -Y. Kim, "1-W, high-gain, high-efficiency, and compact sub-GHz linear power amplifier employing a 1:1 transformer balun in 180-nm CMOS," IEEE Microwave and Wireless Components Letters, vol. 30, no. 8, pp. 779-781,Aug. 2020.
[35] C. Liu, Q. Li, Y. Li, X. Li, H. Liu and Y. -Z. Xiong, "An 890 mW stacked power amplifier using SiGe HBTs for X-band multifunctional chips," in ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC), 2015, pp. 68-71.
[36] K. K. Sessou and N. M. Neihart, "An integrated 700–1200-MHz class-F PA with tunable harmonic terminations in 0.13-μm CMOS," IEEE Transactions on Microwave Theory and
Techniques, vol. 63, no. 4, pp. 1315-1323, April 2015.
[37] V. Trinh, H. Nam and J. Park, "A 20.5-dBm X-Band power amplifier with a 1.2-V supply in 65-nm CMOS technology," IEEE Microwave and Wireless Components Letters, vol. 29,
no. 3, pp. 234-236, March 2019.
[38] H. -F. Wu, Q. -F. Cheng, X. -G. Li and H. -P. Fu, "Analysis and design of an ultrabroadband stacked power amplifier in CMOS technology," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 1, pp. 49-53, Jan. 2016. |