博碩士論文 108521068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.141.42.195
姓名 羅時凱(Shih-Kai Lo)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於第五代通訊之B類連續模式氮化鎵功率放大器暨互補式金氧半導體堆疊式功率放大器之研製
(Implementations on Class-B Continuous Mode GaN Power Amplifiers and CMOS Stacked Power Amplifier for 5G Communications.)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文使用穩懋半導體公司(WINTM)所提供之 0.25-µm GaN/SiC 製程與台灣積體電路製造股份有限公司(tsmcTM ) 所提供之 0.18-µm CMOS 1P6M 製程,分別進行 n77 頻段之氮化鎵連續 B 類模式功率放大器、n77-n79 頻段之氮化鎵連續 B 類功率放大器以及n77-n79 頻段之互補式金氧半導體堆疊式功率放大器之設計。
第一顆提出應用於 n77 頻段之氮化鎵連續 B 類模式功率放大器,輸出匹配電路採用連續 B 類模式,針對基頻和二階諧波阻抗進行匹配,達成寬頻高效率的特性,並且透過閘級偏壓的挑選,改善軟性增益壓縮,進而使得有良好的 AM-AM 的特性。量測結果顯示最佳傳輸增益為 20.7 dB,操作頻寬為 3.3-4.2 GHz,飽和輸出功率為 39.3 dBm,功率附加效率最高可達 51 %,晶片面積為 4.75 (2.73 × 1.74) mm2。
第二顆提出應用於 n77- n79 頻段之氮化鎵連續 B 類模式功率放大器,透過閘級偏壓的挑選,改善功率放大器非線性的特性,輸出匹配電路使用連續 B 類模式,達成寬頻高效率的操作,輸入匹配網路使用帶通濾波器架構,改善整體電路增益平坦性。量測結果顯示最佳傳輸增益為 20.2 dB,操作頻寬為 3.3-5.0 GHz,飽和輸出功率為 39 dBm,功率附加效率最高可達 45 %,晶片面積為 4.83 (2.76 x 1.75 ) mm2。
第三顆提出應用於 n77- n79 頻段之互補式金氧半導體功率放大器,透過使用堆疊式架構,改善了汲極端擺幅受到 CMOS 製程本身較低的崩潰電壓和較高的膝部電壓的限制,進而提升整體電路輸出功率,並且透過偏壓的選擇減緩增益壓縮的特性,達成 1dB功率壓縮點和飽和輸出功率的距離約為 1 dB,輸出和輸入匹配皆採用了對稱型磁耦合共振腔,達成寬頻的操作行為。模擬結果顯示最佳傳輸增益為 20.4 dB,操作頻寬為 3.3-5.0 GHz,飽和輸出功率為 27.6~28.3 dBm,功率附加效率最高可達 20~25.2 %,晶片面積為 3.84 (2.4 × 1.6) mm2。
摘要(英) This thesis developed three power amplifiers (PAs) that were designed and fabricated in WINTM 0.25-µm GaN/SiC and tsmcTM 0.18-µm CMOS 1P6M technology. The first design is a continuous class-B mode power amplifier for n77 band (3.3-4.2 GHz) application in GaN/SiC technology, the second one is a continuous class-B mode power amplifier for n77-n79 band (3.3-5.0 GHz) application in GaN/SiC technology and the third one is a stacked power amplifier for n77-n79 band (3.3-5.0 GHz) application in 0.18-µm CMOS technology.
The first chip presents a continuous class-B mode power amplifier for n77 band in GaN/SiC technology. The high-efficiency and broadband operations achieved by using continuous class-B mode output matching network which is matched for fundamental and second harmonics impedances. The soft gain compression is improved by proper selection of the gate bias voltage and thus to achieve good AM-AM performance. The measurements illustrate as following, the peak power gain is 20.7 dB, the operations bandwidth is from 3.3 to 4.2 GHz, the saturated output power (Psat) is 39.3 dBm, the peak power added efficiency (PAE) is up to 51 %, and the chip area is 4.75 (2.73 × 1.74) mm2.
The second chip presents the continuous class-B mode power amplifier for n77-n79 band in GaN/SiC technology. The gate bias voltage is properly set to improve the linearity. The highefficiency and broadband operations are achieved by using continuous class-B mode output matching network. The bandpass filter topology is used in input matching network design to obtain the gain flatness. The measurements show as following, the peak power gain is 20.2 dB, the operations bandwidth is from 3.3 to 5.0 GHz, the Psat is 39 dBm, the peak PAE is to 45 %,and the chip area is 4.83 (2.76 × 1.75) mm2.
The third chip presents the stacked power amplifier for n77-n79 band application in 0.18- µm CMOS technology. The stacked topology is adopted to sustain the large swings at the output drain node from low breakdown voltage and high knee voltage limitations in CMOS technology. Meanwhile, the gate bias voltage is properly set to improve the gain compression performance. The designed PA achieves only 1-dB difference between the output 1-dB power compression
point (OP1dB) and Psat. The broadband performance is achieved by using symmetrical magnetically coupled resonators at both input and output matching networks. The simulations show as followings, the peak power gain is 20.4 dB, the operations bandwidth is from 3.3 to 5.0 GHz, the Psat is 27.6-28.3 dBm, the peak PAE is to 20~25.2 %, and the chip area is 3.84 (2.4 × 1.6) mm2.
關鍵字(中) ★ 功率放大器
★ 連續B類模式
★ 氮化鎵
★ 堆疊式架構
★ 第五代行動通訊技術
關鍵字(英) ★ power amplifier
★ continuous B mode
★ Gallium nitride
★ stacked FET
★ 5th generation mobile networks
論文目次 摘要 ...................................................i
Abstract.................................................iii
致謝 ...................................................v
目錄 ..................................................vi
圖目錄 ................................................viii
表目錄 .................................................xii
第一章 緒論...............................................1
1-1 研究動機...........................................1
1-2 研究成果...........................................2
1-3 章節簡介...........................................2
第二章 應用於第五代通訊之B類連續模式氮化鎵功率放大器..........3
2-1 研究現況...........................................3
2-2 連續B類模式介紹.....................................5
2-3 應用於n77頻段之氮化鎵連續B類功率放大器................9
2-3-1 電路架構圖.........................................9
2-3-2 電晶體尺寸及偏壓選擇...............................10
2-3-3 L型匹配網路.......................................15
2-3-4 連續B類模式輸出匹配網路設計.........................19
2-3-5 電路模擬與量測結果.................................23
2-3-6 結果比較與討論.....................................40
2-4 應用於n77-n79頻段之氮化鎵連續B類功率放大器...........46
2-4-1 電路架構圖........................................46
2-4-2 電晶體尺寸及偏壓選擇...............................47
2-4-3 連續B類模式輸出匹配電路設計.........................50
2-4-4 輸入匹配網路設計...................................54
2-4-5 電路模擬與量測結果.................................57
2-4-6 結果比較與討論....................................66
第三章 應用於第五代通訊之互補式金氧半導體功率放大器.........69
3-1 研究現況..........................................69
3-2 堆疊式架構介紹.....................................71
3-3 磁耦合共振腔介紹...................................73
3-3-1 對稱型磁耦合共振腔.................................74
3-3-2 非對稱型磁耦合共振腔...............................78
3-4 應用於第五代通訊之互補式金氧半導體堆疊式功率放大器.. .80
3-4-1 電路架構圖........................................80
3-4-2 電晶體尺寸及偏壓選擇...............................82
3-4-3 功率級單元和輸出匹配電路設計........................87
3-4-4 驅動級單元和級間匹配電路設計........................94
3-4-5 輸入匹配電路設計..................................100
3-4-6 電路模擬與量測結果................................104
3-4-7 結果比較與討論....................................111
第四章 結論.............................................113
4-1 總結.............................................113
4-2 未來方向.........................................114
參考文獻.................................................115
參考文獻 [1] Qorvo. “GaN: A Critical Technology for 5G,” white paper, Dec. 2016.
[2] G. Nikandish, R. B. Staszewski and A. Zhu, "Design of highly linear broadband continuous mode GaN MMIC power amplifiers for 5G," IEEE Access, vol. 7, pp. 57138-57150, 2019.
[3] G. R. Nikandish, R. B. Staszewski and A. Zhu, "Broadband fully integrated GaN power amplifier with minimum-inductance BPF matching and two-transistor AM-PM compensation," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67,no. 12, pp. 4211-4223, Dec. 2020.
[4] B. Liu, M. Mao, D. Khanna, P. Choi, C. C. Boon and E. A. Fitzgerald, "A highly efficient fully integrated GaN power amplifier for 5-GHz WLAN 802.11ac application," IEEE Microwave and Wireless Components Letters, vol. 28, no. 5, pp. 437-439, May 2018.
[5] R. Joshi, M. -H. Liu and S. S. H. Hsu, "A high efficiency compact class F GaN MMIC power amplifier for 5G applications," in 2020 50th European Microwave Conference (EuMC), 2021, pp. 1103-1106.
[6] G. R. Nikandish, R. B. Staszewski and A. Zhu, "A fully integrated reconfigurable multimode Class-F2,3 GaN power amplifier," IEEE Solid-State Circuits Letters, vol. 3, pp. 270-273,2020.
[7] R. Quaglia, V. Camarchia, M. Pirola, J. J. M. Rubio and G. Ghione, "Linear GaN MMIC combined power amplifiers for 7-GHz microwave backhaul," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 11, pp. 2700-2710, Nov. 2014.
[8] G. Nikandish, R. B. Staszewski and A. Zhu, "A broadband continuous class-F GaN MMIC
PA using multi-resonance matching network," in 2019 14th European Microwave Integrated Circuits Conference (EuMIC), 2019, pp. 108-111.
[9] C. H. Kim and B. Park, "Fully-integrated two-stage GaN MMIC doherty power amplifier for LTE small cells," IEEE Microwave and Wireless Components Letters, vol. 26, no. 11,
pp. 918-920, Nov. 2016.
[10] G. Nikandish, R. B. Staszewski and A. Zhu, "Bandwidth enhancement of GaN MMIC doherty power amplifiers using broadband transformer-based load modulation network," IEEE Access, vol. 7, pp. 119844-119855, 2019.
[11] S. C. Cripps, P. J. Tasker, A. L. Clarke, J. Lees, and J. Benedikt, “On the continuity of high efficiency modes in linear RF power amplifiers,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 10, pp. 665–667, Oct. 2009.
[12] S. C. Cripps, RF Power Amplifiers for Wireless Communications, 2nd ed. Boston, MA: Artech, 2006.
[13] P. Wright, J. Lees, J. Benedikt, P. J. Tasker, and S. C. Cripps, "A methodology for realizing high efficiency class-J in a linear and broadband PA," IEEE Trans. Microwave Theory Techniques, vol. 57, no. 12, pp. 3196–3204, Dec.2009.
[14] V. Carrubba et al., “The continuous class-F mode power amplifier,” in Proc. Eur. Microw. Conf., Sep. 2010, pp. 1674–1677.
[15] J. H. Kim, S. J. Lee, B. H. Park, S. H. Jang, J. H. Jung, and C. S. Park, “Analysis of highefficiency power amplifier using second harmonic manipulation: Inverse class-F/J amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 8, pp. 2024–2036, Aug. 2011.
[16] J. A. Reynoso-Hernández et al., "A new method for extracting Ri and Rgd of the intrinsic transistor model of GaN HEMT based on extrema points of intrinsic Y-parameters," 2015 IEEE MTT-S International Microwave Symposium, 2015, pp. 1-3
[17] B. Liu, M. Mao, C. C. Boon, P. Choi, D. Khanna and E. A. Fitzgerald, "A fully integrated class-J GaN MMIC power amplifier for 5-GHz WLAN 802.11ax application," IEEE Microwave and Wireless Components Letters, vol. 28, no. 5, pp. 434-436, May 2018.
[18] H. Xie, Y. J. Cheng, Y. R. Ding, L. Wang and Y. Fan, "A C-band high-efficiency power amplifier MMIC with second-harmonic control in 0.25 μm GaN HEMT technology," IEEE Microwave and Wireless Components Letters, vol. 31, no. 12, pp. 1303-1306, Dec. 2021.
[19] R. Giofrè, P. Colantonio and F. Giannini, "A design approach to maximize the efficiency vs. linearity trade-off in fixed and modulated load GaN power amplifiers," IEEE Access,vol. 6, pp. 9247-9255, 2018.
[20] G. R. Nikandish, R. B. Staszewski and A. Zhu, "Unbalanced power amplifier: An architecture for broadband back-off efficiency enhancement," IEEE Journal of Solid-State Circuits, vol. 56, no. 2, pp. 367-381, Feb. 2021.
[21] C. Lin and H. Chang, "A broadband injection-locking class-E power amplifier," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 10, pp. 3232-3242, Oct.
2012.
[22] 3GPP TS 38.101-1 V15.9.0, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; User Equipment (UE) radio transmission and reception;
Part 1: Range 1 Standalone, Apr. 2020.
[23] K. K. Sessou and N. M. Neihart, "An integrated 700–1200-MHz class-F PA with tunable harmonic terminations in 0.13-μm CMOS," IEEE Transactions on Microwave Theory and
Techniques, vol. 63, no. 4, pp. 1315-1323, April 2015.
[24] J. Enomoto et al., "AC-stacked power amplifier for 5G mobile handset applications in band n77," 2020 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2020, pp. 73-75
[25] Y. Dong, L. Mao and S. Xie, "Fully integrated class-J power amplifier in standard CMOS technology," IEEE Microwave and Wireless Components Letters, vol. 27, no. 1, pp. 64-66,
Jan. 2017.
[26] S. Pornpromlikit, J. Jeong, C. D. Presti, A. Scuderi and P. M. Asbeck, "A watt-level stacked-FET linear power amplifier in silicon-on-insulator CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 1, pp. 57-64, Jan. 2010.
[27] H. Dabag, B. Hanafi, F. Golcuk, A. Agah, J. F. Buckwalter and P. M. Asbeck, "Analysis and design of stacked-FET millimeter-wave power amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1543-1556, April 2013.
[28] H. Jia, C. C. Prawoto, B. Chi, Z. Wang and C. P. Yue, "A full Ka-band power amplifier with 32.9% PAE and 15.3-dBm power in 65-nm CMOS," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 9, pp. 2657 2668, Sept. 2018.
[29] C. Li, C. Kuo and M. Kuo, "A 1.2-V 5.2-mW 20–30-GHz wideband receiver front-end in 0.18 μm CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 11, pp. 3502-3512, Nov. 2012.
[30] Park, J. L. Woo, U. Kim, and Y. Kwon, “Broadband CMOS stacked RF power amplifier using reconfigurable interstage network for wideband envelope tracking,” IEEE Trans.Microw. Theory Techn., vol. 63, no. 4, pp. 1174–1185, Apr. 2015.
[31] I. Aoki, S. D. Kee, D. B. Rutledge and A. Hajimiri, "Distributed active transformer-a new power-combining and impedance-transformation technique," IEEE Transactions on
Microwave Theory and Techniques, vol. 50, no. 1, pp. 316-331, Jan. 2002
[32] V. Kiran, "ACPR reduction for better power efficiency using adaptive DPD," in 2016 International Conference on Communication and Signal Processing (ICCSP), 2016, pp.
0495-0498.
[33] M. V. Deepak Nair, R. Giofre, P. Colantonio and F. Giannini, "Effects of digital predistortion and crest factor reduction techniques on efficiency and linearity trade-off in class AB GaN-PA," in 2015 European Microwave Conference (EuMC), 2015, pp. 1128-1131.
[34] H. -W. Choi, S. Choi, J. -T. Lim and C. -Y. Kim, "1-W, high-gain, high-efficiency, and compact sub-GHz linear power amplifier employing a 1:1 transformer balun in 180-nm CMOS," IEEE Microwave and Wireless Components Letters, vol. 30, no. 8, pp. 779-781,Aug. 2020.
[35] C. Liu, Q. Li, Y. Li, X. Li, H. Liu and Y. -Z. Xiong, "An 890 mW stacked power amplifier using SiGe HBTs for X-band multifunctional chips," in ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC), 2015, pp. 68-71.
[36] K. K. Sessou and N. M. Neihart, "An integrated 700–1200-MHz class-F PA with tunable harmonic terminations in 0.13-μm CMOS," IEEE Transactions on Microwave Theory and
Techniques, vol. 63, no. 4, pp. 1315-1323, April 2015.
[37] V. Trinh, H. Nam and J. Park, "A 20.5-dBm X-Band power amplifier with a 1.2-V supply in 65-nm CMOS technology," IEEE Microwave and Wireless Components Letters, vol. 29,
no. 3, pp. 234-236, March 2019.
[38] H. -F. Wu, Q. -F. Cheng, X. -G. Li and H. -P. Fu, "Analysis and design of an ultrabroadband stacked power amplifier in CMOS technology," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 1, pp. 49-53, Jan. 2016.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2022-4-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明