博碩士論文 108521137 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:18.219.140.44
姓名 張弘翰(Hung-Han Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 考慮電壓衰退和繞線影響以優化電路時序之電源供應網絡精煉策略
(Power Distribution Network Refinement for Timing Optimization Through IR-drop and Routing Trade-off)
相關論文
★ 晶圓圖之網格及稀疏缺陷樣態辨識★ 晶圓圖提取特徵參數錯誤樣態分析
★ 使用聚類過濾策略和 CNN 計算識別晶圓圖瑕疵樣態★ 新建晶圓圖相似性門檻以強化相似程度辨別能力
★ 一種可動態重新配置的4:2近似壓縮器用於補償老化★ 一個可靠的靜態隨機存取記憶體內運算結構: 設計指南與耐老化策略研究
★ 一個高效的老化偵測器部屬策略: 基於生成對抗網路的設計方法★ 適用於提高自旋轉移力矩式磁阻隨機存取記憶體矩陣可靠度之老化偵測與緩解架構設計
★ 8T 靜態隨機存取記憶體之內積運算引擎的老化威脅緩解策略: 從架構及運算角度來提出解決的方法★ 用於響應穩定性的老化感知平行掃描鏈PUF設計
★ 8T靜態隨機存取記憶體運算的老化檢測和容忍機制:適用於邏輯和 MAC 運算的應用★ 使用擺置後的設計特徵及極限梯度提升演算法預測繞線後的繞線需求
★ 基於強化學習的晶片佈局規劃的卷積神經網路與圖神經網路融合架構★ 用於佈線後階段電壓降優化的強化學習框架
★ 多核心系統的老化與瞬態錯誤感知任務部署策略:壽命延長且節能的框架★ 基於圖神經網絡(GNN)的內部節點控制(INC)和輸入向量控制(IVC)協同優化用於老化緩解
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-4-25以後開放)
摘要(中) 在晶片設計中,電路藉由晶片內電網供應電壓源和接地,而在設計晶片內電網時需要考慮到壓降反應(IR-drop)對晶片效能所造成的影響。壓降反應(IR-drop)發生由於在電源流的傳遞過程中,因為傳遞電源的導線本身具有電阻值,此電阻值會使電源值下降,而形成壓降反應。在晶片設計中,如果晶片內電網發生大量的壓降反應,將會降低電路的抗雜訊能力,甚至影響到電路的效能。
先前有許多關於解決壓降反應的相關研究,其中一個方法為在設計晶片內電網時即考量壓降影響,並設法透過優化晶片內電網設計來減低壓降反應。另一方面,在晶片內電網的設計中,電源導線本身需要消耗繞線資源,此外,在晶片內電網設計中,我們會需要藉由導通孔陣列(via arrays)來將電壓供應至底層電路,而這些導通孔也會佔據電路的繞線資源,進而影響電路繞線的複雜度而導致繞線壅塞。繞線壅塞也會影響電路的效能並增加電路設計的時間,所以必須在設計晶片內電網時須考慮到訊號線繞線的問題。
在本篇論文中,我們同時針對上述的壓降效應和繞線問題進行考量,並提出一優化晶片內電網設計來優化電路的時序及效能。具體而言,我們提出一完整的晶片內電網的精進架構,透過在原本晶片內電網中適當的添加額外的供電導線,來優化電路之時序與效能。我們透過成本函數來反應電源導線對於電路時序的影響,並藉由成本函數來找出適當的晶片內電網結構。相較於先前的研究,我們同時考慮到壓降反應和繞線影響來優化我們的電路時序。研究結果顯現,相較於優化前的電路,我們能達到5.6%的總負時序量優化,並能達到36%的壓降效應。
摘要(英) Power networks which provide supply voltage and ground to transistors are essential for modern ICs. It is necessary to consider IR-drop when constructing power network. The IR-drop occurs during the transfer of the supply voltage from the power network to the circuit. The wires of the power network contain parasitic resistance which will lead the dropping of supply voltage. If a large amount of voltage drop occurs on the power network in a circuit, the noise margin of the circuit will be reduced, and the performance of the circuit will be degraded.
In previous researches, the researchers designed an IR-drop-friendly power network to reduce the IR-drop of the circuit. On the other hand, the wire of the power network consumes the routing resources. Moreover, the power stripes connect to the underlying circuit through the via arrays. The via arrays also occupy the routing resource, thereby increasing the complexity of the circuit routing and causing routing congestion. Therefore, it is necessary to consider the routing issue when designing the power network.
In this work, we propose a power network refinement framework which can generate appropriate power network structure for better circuit timing by considering both IR-drop and routing congestions. In our framework, we add additional power stripes based on the initial power network to improve the circuit timing. We use a cost function to analyze the relationship between circuit timing and IR-drop as well as routing congestions, and add the power stripes based on the cost function evaluation. The experiment result shows that we can improve the total negative slacks of the circuit by the 5.6% compared to the original design. Also, we can save the 36% of the IR drop compared to the original design.
關鍵字(中) ★ 實體設計
★ 晶片內電網
★ 壓降效應
★ 繞線壅塞
關鍵字(英) ★ Physical Design
★ Power Distribution Network
★ IR-drop
★ Routing Congestion
論文目次 摘要 VIII
Abstract IX
Acknowledgment X
Contents XI
List of Figures XII
Chapter 1 Introduction 1
Chapter 2 Background 3
2.1 Physical Design Flow 3
2.2 Modified Nodal Analysis 4
2.3 Routing Congestion Analysis and DRC Rules 5
2.4 Recursive Feature Elimination 7
Chapter 3 IR-drop and Routing Aware Power Network Refinement Framework 9
3.1 Cost Function Designing 9
3.2 Power Network Generation 10
3.2.1.1 Input Data Preparation 11
3.2.1.2 Algorithm Flow 12
3.2.1.3 Placing Stripe Algorithm 13
3.2.1.1 Result Generation 13
Chapter 4 Experimental Results 14
4.1 Cost Function 15
4.2 Power Distribution Network Synthesis Results 18
Chapter 5 Conclusions 20
Reference 21
參考文獻 [1] Ahmed, Nisar, Mohammad Tehranipoor, and Vinay Jayaram. "A novel framework for faster-than-at-speed delay test considering IR-drop effects." Proceedings of the 2006 IEEE/ACM international conference on Computer-aided design. 2006.
[2] Ajami, Amir H., et al. "Analysis of IR-drop scaling with implications for deep submicron P/G network designs." Fourth International Symposium on Quality Electronic Design, 2003. Proceedings. IEEE, 2003.
[3] Bai, Geng, Sudhakar Bobba, and Ibrahim N. Hajj. "Static timing analysis including power supply noise effect on propagation delay in VLSI circuits." Proceedings of the 38th annual Design Automation Conference. 2001.
[4] Chang, Wen-Hsiang, Mango C-T. Chao, and Shi-Hao Chen. "Practical routability-driven design flow for multilayer power networks using aluminum-pad layer." IEEE Transactions on Very Large-Scale Integration (VLSI) Systems 22.5 (2013): 1069-1081.
[5] Chang, Wen-Hsiang, et al. "Generating routing-driven power distribution networks with machine-learning technique." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 36.8 (2017): 1237-1250.
[6] Chang, Wen-Hsiang, et al. "Power distribution network generation for optimizing IR-drop aware timing." 2020 IEEE/ACM International Conference on Computer Aided Design (ICCAD). IEEE, 2020.
[7] Chhabria, Vidya A., et al. "Template-based PDN synthesis in floorplan and placement using classifier and CNN techniques." 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2020.
[8] Chhabria, Vidya A., and Sachin S. Sapatnekar. "OpeNPDN: A Neural-network-based Framework for Power Delivery Network Synthesis." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2021).
[9] Guyon, Isabelle, et al. "Gene selection for cancer classification using support vector machines." Machine learning 46.1 (2002): 389-422.
[10] Kobayashi, Susumu, and Kenichi Horiuchi. "An LOCV-based static timing analysis considering spatial correlations of power supply variations." 2011 Design, Automation & Test in Europe. IEEE, 2011.
[11] Lin, Jai-Ming, Jhih-Sheng Syu, and I-Ru Chen. "Macro-aware row-style power delivery network design for better routability." 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, 2018.
[12] Liu, Sean Shih-Ying, et al. "Effective power network prototyping via statistical-based clustering and sequential linear programming." 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2013.
[13] Nithin, S. K., Gowrysankar Shanmugam, and Sreeram Chandrasekar. "Dynamic voltage (IR) drop analysis and design closure: Issues and challenges." 2010 11th International Symposium on Quality Electronic Design (ISQED). IEEE, 2010.
[14] Popovich, Mikhail, and Eby G. Friedman. "Noise aware decoupling capacitors for multi-voltage power distribution systems." Sixth international symposium on quality electronic design (isqed′05). IEEE, 2005.
[15] Popovich, Mikhail, and Eby G. Friedman. "Decoupling capacitors for multi-voltage power distribution systems." IEEE Transactions on Very Large-Scale Integration (VLSI) Systems 14.3 (2006): 217-228.
[16] Popovich, Mikhail, et al. "On-chip power distribution grids with multiple supply voltages for high-performance integrated circuits." IEEE Transactions on Very Large-Scale Integration (VLSI) Systems 16.7 (2008): 908-921.
[17] Sato, Takashi, et al. "A time-slicing ring oscillator for capturing instantaneous delay degradation and power supply voltage drop." IEEE Custom Integrated Circuits Conference 2006. IEEE, 2006.
[18] Saxena, Jayashree, et al. "A case study of IR-drop in structured at-speed testing." International Test Conference, 2003. Proceedings. ITC 2003.. IEEE Computer Society, 2003.
[19] Saxena, Prashant, Rupesh S. Shelar, and Sachin Sapatnekar. Routing Congestion in VLSI Circuits: Estimation and Optimization. Springer Science & Business Media, 2007.
[20] Su, Haihua, et al. "Congestion-driven codesign of power and signal networks." Proceedings 2002 Design Automation Conference (IEEE Cat. No. 02CH37324). IEEE, 2002.
[21] Sun, Zeyu, et al. "Voltage-based electromigration immortality check for general multi-branch interconnects." 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, 2016.
[22] Tehranipoor, Mohammad, and Kenneth M. Butler. "Power supply noise: A survey on effects and research." IEEE Design & Test of Computers 27.2 (2010): 51-67.
[23] Wei, Yaoguang, et al. "GLARE: Global and local wiring aware routability evaluation." DAC Design Automation Conference 2012. IEEE, 2012.
[24] Zhou, Han, et al. "EM-aware and lifetime-constrained optimization for multisegment power grid networks." IEEE Transactions on Very Large-Scale Integration (VLSI) Systems 27.4 (2019): 940-953.
指導教授 陳聿廣(Yu-Guang Chen) 審核日期 2022-4-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明