博碩士論文 108323085 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:3.14.132.178
姓名 陳柏任(Bo-Ren Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 組織工程應用之平面與旋轉兩用式三維生物列印機開發
(Development of Planar/Rotary Three-dimensional Bioprinter for Tissue Engineering Applications)
相關論文
★ 雙光子光致聚合微製造系統之研發★ 雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究
★ 椎弓根螺釘定位演算法及導引夾治具自動化設計流程開發★ 雙光子聚合微製造技術以能量均勻橢圓體為基之曝光時間最佳化研究
★ 雙光子光致聚合微製造以弦高誤差為基之切層演算法★ 雙光子光致聚合微製造技術以螺旋線雷射掃描路徑增強微結構強度研究
★ 雙光子聚合微製造技術之三維結構 製造品質改進研究★ 利用二維多重圖像建構三維三角網格模型的生成與品質改進
★ 組織工程用冷凍成型製造系統 之自動化製作流程開發★ 自動相機校正與二維影像輪廓萃取研究
★ 基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究★ 冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究
★ 基於二維影像輪廓重建三維模型技術之多視角相機群組空間座標系統整合★ 應用於大型物體三維模型重建之多重二維校正板相機校正流程開發
★ 組織工程用冷凍成型積層製造之固態水支撐結構生成研究★ 聚醚醚酮之積層製造系統開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-2-1以後開放)
摘要(中) 三維生物列印在近年來已成為一項熱門的生物醫學工程,透過組織工程與積層製造兩項技術的優點,可以客製化製作生物支架,解決難以模擬天然結構或複雜圖形製造之問題。而在積層製造結合旋轉列印技術的發明下,更是為小直徑管狀支架提供多一種的製作方法,在提升製作成功率的同時,也能保持管狀支架中心孔洞的暢通度,成為一種適合管狀支架製作的方式。
本研究為使三維生物列印機在保有原先的平面列印下,同時具備旋轉列印的功能,進而開發一台擁有平面與旋轉列印之三維生物列印系統,且在穩定的列印環境下,製作簡單平面支架與空心管狀支架。系統使用乙太網路控制自動化技術(EtherCAT)做為軟硬體的主要通訊方式,其包含設計平面與旋轉可更替式列印平台模組、氣簾封閉式列印環境模組、抗凍液除霜模組、改良之排水模組與紅外線溫度感測模組等。最後使用 C#開發環境,將軟硬體設備整合至一人機控制介面,即可進行操作。
本研究透過煙流觀察氣簾生成狀態,再檢測其對列印環境的影響,將結果量化為數據並紀錄。最後使用自行開發之三維生物列印系統,利用氣動擠出式噴頭,分別用於低溫之工作平台與旋轉軸上,嘗試列印殼聚醣平面與管狀支架,以驗證機台之功效。
摘要(英) Three-dimensional bioprinting has evolved popular biomedical engineering in recent years. With the advantages of tissue engineering and additive manufacturing, biological scaffolds can be customized by three-dimensional bioprinting, solve the problem that it is difficult to simulate the natural structure or the manufacture of complex graphics. With the invention of layered manufacturing combined with rotary printing technology, it provides more methods for making small-diameter tubular stents. While improving the success rate of production, it can also maintain the smoothness of the central hole of the tubular stent, making it a suitable tube-shaped stent. The way the stent is made.
This study aims to develop the three-dimensional bio-printer system with planar and rotation printing funtions. The bio-printer system can manufacture planar scaffolds and hollow tubular scaffolds on the stable circumstance. We use Ethernet Control Automation Technology (EtherCAT) as the main communication method of software and hardware. We have newly designed several modules, for example: planar and rotation replaceable printing platform module, air curtain enclosed printing environment module, antifreeze defrost module, improved drainage module and infrared temperature sensing module, etc. Finally, we develop the user control interface of C# environment to integrate the software and hardware equipment, and the operator can easily perform with simple training.
We observe the generation of air curtain through smoke flow, detect the printing circumstance impact of it, and then we quantify the results and record them. At last, we use the pneumatic extrusion nozzle to pinting the chitosan planar and tubular scaffolds on the working platform and rotating shaft of low temperature, to verify the function of the machine.
關鍵字(中) ★ 組織工程
★ 3D 生物列印機
★ 管狀支架
★ 旋轉列印
關鍵字(英) ★ Tissue engineering
★ 3D Bioprinter
★ Tubular scaffolds
★ Additive-lathe
論文目次 摘要...................................І
ABSTRACT..............................ІІ
誌謝.................................ІІI
目錄..................................IV
圖目錄................................VI
表目錄.................................X
第一章 緒論............................1
1-1 前言.............................1
1-2 文獻回顧.........................2
1-3 研究動機與目的...................12
1-4 論文架構........................13
第二章 研究與理論說明...................14
2-1 組織工程簡介.....................14
2-2 組織工程結合積層製造之簡介.........19
2-3 管狀結構製造方法介紹..............27
2-4 EtherCAT工業通訊協議介紹..........33
2-5 前代生物列印機簡介................34
第三章 系統架構與實驗方法................36
3-1三維生物列印機簡介.................36
3-2可交換式列印平台與各項模組介紹......42
3-3軟硬體整合........................52
3-4人機介面與控制流程.................57
3-5工作平台與旋轉軸溫度量測方式........61
3-6列印參數之設計.....................63
3-7使用之材料介紹與製備方法...........64
第四章 實驗結果與討論...................66
4-1紅外線溫度感測模組之校準...........66
4-2氣簾封閉式之列印環境分析...........69
4-3工作平台之溫度分析.................73
4-4旋轉軸之溫度分析...................80
4-5平面與管狀支架之製作...............85
第五章 結論與未來展望...................89
5-1 結論.............................89
5-2 未來展望.........................90
參考文獻...............................91
參考文獻 [1] L. Jing, L. Yao, M. Zhao, L. P. Peng and M. Liu, “Organ Preservation: from the Past to the Future”, Acta Pharmacologica Sinica, Vol. 39, pp. 845-857, 2018.
[2] 李宣書,淺談組織工程,物理雙月刊,2001年。
[3] B. Gaye, G. S. Tajeu, R. S. Vasan, C. Lassale, N. B. Allen, A. S. Manoux and X. Jouven, “Association of Changes in Cardiovascular Health Metrics and Risk of Subsequent Cardiovascular Disease and Mortality”, Journal of the American Heart Association, Vol. 9, e017458, 2020.
[4] W. Zhang, H. Iso, Y. Murakami, K. Miura, M. Nagai, D. Sugiyama, H. Ueshima, T. Okamura and E. J. Group, “Serum Uric Acid and Mortality Form Cardiovascular Disease: EPOCH-JAPAN Study”, Journal of Atherosclerosis and Thrombosis, Vol. 23, pp. 1365-1366, 2016.
[5] J. Eero, “Obesity and Cardiovascular Disease”, Vol. 67, pp. 25-32, 2015.
[6] L. Jingyi, Z. Bin, L. Liang, Y. Jun and F. Jianzhong, “Additive-lathe 3D Bioprinting of Bilayered Nerve Conduits Incorporated with Supportive Cells”, Bioactive Materials, Vol. 6, pp. 219-229, 2021.
[7] How to Make Almost Anything:Final Project - The Additive Lathe, Available at:http://fab.cba.mit.edu/classes/863.11/people/yoav.shterman/secondUpdate.html
[8] O. Byrne, F. Coulter, M. Glynn, J. F. X. Jones, A. N. Annaidh, E. D. Ocearbhaill and D. P. Holland, “Additive Manufacture of Composite Soft Pneumatic Actuators”, Soft Robotics, Vol. 5, pp. 726-736, 2018.
[9] A. Guerra, A. Roca and J. d. Ciurana, “A Novel 3D Additive Manufacturing Machine to Biodegradable Stents”, Procedia Manufacturing, Vol. 13, pp. 718-723, 2017.
[10] M. Rabioneta, A. J. Guerrab, T. Puiga and J. Ciurana, “3D Printed Tubular Scaffolds for Vascular Tissue Engineering”, Procedia CIRP, Vol. 68, pp. 352-357, 2018.
[11] C. Norotte, F. S. Marga, L. E. Niklason and G. Forgacs, “Scaffold-Free Vascular Tissue Engineering Using Bioprinting”, Biomaterials, Vol. 30, pp. 5910-5917, 2009.
[12] Y. Zhang, Y. Yu, H. Chen and I. T. Ozbolat, “Characterization of Printable Cellular Micro-Fluidic Channels for Tissue Engineering”, Biofabrication, Vol. 5, 25004, 2013.
[13] Y. Jung, H. Ji, Z. Chen, H. F. Chan, L. Atchison, B. Klitzman, G. Truskey and K. W. Leong, “Scaffold-Free, Human Mesenchymal Stem Cell-Based Tissue Engineered Blood Vessels”, Scientific Reports, Vol. 5, 15116, 2015.
[14] D. Lei, B. Luo, Y. Guo, D. Wang, H. Yang, S. Wang, H. Xuan, A. Shen, Y. Zhang, Z. Liu, C. He, F. L. Qing, Y. Xu, G. Zhou and Z. You, “4-Axis Printing Microfibrous Tubular Scaffold and Tracheal Cartilage Application”, Science China Materials, Vol. 62, pp. 1910-1920, 2019.
[15] Q. Gao, Z. Liu, Z. Lin, J. Qiu, Y. Liu, A. Liu, Y. Wang, M. Xiang, B. Chen, J. Fu and Y. He, “3D Bioprinting of Vessel-Like Structures with Multilevel Fluidic Channels”, ACS Biomaterials Science & Engineering, Vol. 3, pp. 399-408, 2017.
[16] Q. Gao, Z. Liu, Z. Lin, J. Qiu, Y. Liu, A. Liu, Y. Wang, M. Xiang, B. Chen, J. Fu and Y. He, “3D Bioprinting of Vessel-Like Structures with Multilevel Fluidic Channels (Supplemental Materials)”, ACS Biomaterials Science & Engineering, Vol. 3, pp. 399-408, 2017.
[17] T. S. Yarza, I. Bataille and D. Letourneur, “Cardiovascular Bio-Engineering: Current State of the Art”, J Cardiovasc Transl Res, Vol. 10, pp. 180-193, 2017.
[18] K. Reeser and A. L. Doiron, “Three-Dimensional Printing on a Rotating Cylindrical Mandrel: A Review of Additive-Lathe 3D Printing Technology”, 3D Printing & Additive Manufacturing, Vol. 6, 6, 2019.
[19] A. Kenich, M. B. Galpin, E. Rolland and Y. Ibrahim, “Lathe-Type 3D Printer”, Imperial College London, ME3 DMT Final Reportgroup 27, 2013.
[20] A. H. C. Au, A. Berger and A. Kigler, “Development of a 3D Printer Capable of Printing Biological Material using a Radial Coordinate System”, Binghamton University, Bachelor of Science in Biomedical Engineering, 2015.
[21] H. Liu, H. Zhou, H. Lan, T. Liu, X. Liu and H. Yu, “3D Printing of Artificial Blood Vessel: Study on Multi-Parameter Optimization Design for Vascular Molding Effect in Alginate and Gelatin”, Micromachines, Vol. 8, 237, 2017.
[22] K. V. Kampen, E. Olaret, E. Olaret, I. C. Stancu, L. Moroni and C. Mota, “Controllable Four Axis Extrusion-Based Additive Manufacturing System for the Fabrication of Tubular Scaffolds with Tailorable Mechanical Properties”, Materials Science & Engineering: C, Vol. 119, 111472, 2021.
[23] REVOTEK:Technology / T-Series Printers™, Available at:http://www.revotekhealth.com/technology.aspx?t=1
[24] S. Pina, V. P. Ribeiro, C. F. Marques, F. R. Maia, T. H. Silva, R. L. Reis and J. M. Oliveira, “Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications”, Materials, Vol. 12, 1824, 2019.
[25] Y. Du, J. L. Guo, J. Wang, A. G. Mikos and S. Zhang, “Hierarchically Designed Bone Scaffolds: From Internal Cues to External Stimuli”, Biomaterials, Vol. 218, 119334, 2019.
[26] S. Yi, F. Ding, L.Gong and X. Gu, “Extracellular Matrix Scaffolds for Tissue Engineering and Regenerative Medicine”, Stem Cell Research & Therapy, Vol. 12, pp. 233-246, 2017.
[27] B. Dhandayuthapani, Y. Yoshida, T. Maekawa and D. S. Kumar, “Polymeric Scaffolds in Tissue Engineering Application: A Review”, Hindawi, Vol. 2011, 290602, 2011.
[28] M. Jafari, Z. Paknejad, M. R. Rad, S. R. Motamedian, M. J. Eghbal, N. Nadjmi and A. Khojasteh, “Polymeric Scaffolds in Tissue Engineering: A Literature Review”, Journal of Biomedical Materials Research B-Applied Biomaterials, Vol. 105, pp. 431-459, 2017.
[29] D. G. Tamay, T. D. Usal, A. S. Alagoz, D. Yucel, N. Hasirci and V. Hasirci, “3D and 4D Printing of Polymers for Tissue Engineering Applications”, Biotechnology & Bioengineering, Vol. 7, 164, 2019.
[30] G. H. Wu and S. h. Hsu, “Review: Polymeric-Based 3D Printing for Tissue Engineering”, Journal of Medical & Biological Engineering, Vol. 35, pp. 285-292, 2015.
[31] Z. Xie, M. Gao, A. O. Lobo and T. J. Webster, “3D Bioprinting in Tissue Engineering for Medical Applications: The Classic and the Hybrid”, Polymers, Vol. 12, 1717, 2020.
[32] I. Zein, D. W. Hutmacher, K. C. Tan and S. H. Teoh, “Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications”, Biomaterials, Vol. 23, pp. 1169-1185, 2002.
[33] C. Y. Liu, J. Tong, J. Ma, D. Wang, F. Xu, Y. L. Liu, Z. G. Chen and C. G. Lao, “Low-Temperature Deposition Manufacturing: A Versatile Material Extrusion-Based 3D Printing Technology for Fabricating Hierarchically Porous Materials”, Hindawi, Vol. 2019, pp. 1-14, 2019.
[34] Y. Lu, G. Mapili, G. Suhali, S. C. Chen and K. Roy, “A Digital Micro-Mirror Device-Based System for the Microfabrication of Complex, Spatially Patterned Tissue Engineering Scaffolds”, Journal of Biomedical Materials Research Part A, Vol. 77, pp. 396-405, 2006.
[35] J. Zhang, Q. Hu, S. Wang, J. Tao and M. Gou, “Digital Light Processing Based Three-Dimensional Printing for Medical Applications”, Bioprinting, Vol. 6, 242, 2020.
[36] A. Mazzoli, “Selective Laser Sintering in Biomedical Engineering”, Medical & Biological Engineering & Computing, Vol. 51, pp. 245-256, 2013.
[37] G. Z. Tan and Y. Zhou, “Electrospinning of Biomimetic Fibrous Scaffolds for Tissue Engineering: A Review”, International Journal of Polymeric Materials & Polymeric Biomaterials, Vol. 69, pp. 947-960, 2020.
[38] J. Hong, M. Yeo, G. H. Yang and G. H. Kim, “Cell-Electrospinning and Its Application for Tissue Engineering”, International Journal of Molecular Sciences, Vol. 20, 6208, 2019.
[39] C. Korner, “Additive Manufacturing of Metallic Components by Selective Electron Beam Melting - A Review”, International Materials Reviews, Vol. 61, pp. 361-377, 2016.
[40] M. Cronskar , M. Backstrom and L. E. Rannar, “Production of Customized Hip Stem Prostheses - A Comparison Between Conventional Machining and Electron Beam Melting (EBM)”, Rapid Prototyping Journal, Vol. 19, pp. 365-372, 2013.
[41] C. Mandrycky, Z. Wang, K. Kim and D. H. Ki, “3D Bioprinting for Engineering Complex Tissues”, Biotechnology Advances, Vol. 34, pp. 422-434, 2016.
[42] J. J. Chung, H. Im, S. H. Kim, J. W. Park and Y. Jung, “Toward Biomimetic Scaffolds for Tissue Engineering: 3D Printing Techniques in Regenerative Medicine”, Biotechnology & Bioengineering, Vol. 8, 586406, 2020.
[43] A. Zaszczynska, M. M. Heljak, A. Gradys and P. Sajkiewicz, “Advances in 3D Printing for Tissue Engineering”, Materials, Vol. 14, 3149, 2021.
[44] B. K. Gu, D. J. Choi, S. J. Park, M. S. Kim, C. M. Kang and C. H. Kim, “3-Dimensional Bioprinting for Tissue Engineering Applications”, Biomaterials Research, Vol. 20, 12, 2016.
[45] S. L. Francis, C. D. Bella, G. G. Wallace and P. F. Choong, “Cartilage Tissue Engineering Using Stem Cells and Bioprinting Technology-Barriers to Clinical Translation”, Frontiers in Surgery, Vol. 5, 70, 2018.
[46] A. W. Cook and D. Youngs, “Rayleigh-Taylor Instability and Mixing”, Physica D: Nonlinear Phenomena, Vol. 37, pp. 270-287, 1989.
[47] S. Ding, L. Feng, J. Wu, F. Zhu, Z. Tan, and R. Yao, “Bioprinting of Stem Cells: Interplay of Bioprinting Process, Bioinks, and Stem Cell Properties”, ACS Biomaterials Science & Engineering, Vol. 4, pp. 3108-3124, 2018.
[48] X. Cui, J. Li, Y. Hartanto, M. Durham, J. Tang, H. Zhang, G. Hooper, K. Lim and T. Woodfield, “Advances in Extrusion 3D Bioprinting: a Focus on Multicomponent Hydrogel-Based Bioinks”, Advanced Healthcare Materials, Vol. 9, 1901648, 2020.
[49] S. B. Bammesberger, S. Kartmann, L. Tanguy, D. Liang, K. Mutschler, A. Ernst, R. Zengerle and P. Koltay, “A Low-Cost, Normally Closed, Solenoid Valve for Non-Contact Dispensing in the Sub-µL Range”, Micromachines, Vol. 4, pp. 9-21, 2013.
[50] I. T. Ozbolat and M. Hospodiuk, “Current Ddvances and Future Perspectives in Extrusion-Based Bioprinting”, Biomaterials, Vol. 76, pp. 321-343, 2016.
[51] H. Gudapati, M. Dey and I. Ozbolat, “A Comprehensive Review on Droplet-Based Bioprinting: Past, Present and Future”, Biomaterials, Vol. 102, pp. 20-42, 2016.
[52] X. Li, B. Liu, B. Pei, J. Chen, D. Zhou, J. Peng, X. Zhang, W. Jia, and T. Xu, “Inkjet Bioprinting of Biomaterials”, Chemical Reviews, Vol. 120, pp. 10793-10833. 2020.
[53] F. Guillemot, B. Guillotin, A. Fontaine, M. Ali, S. Catros, V. Keriquel, J. C. Fricain, M. Remy, R. Bareille and J. A. Vilamitjana, “Laser-Assisted Bioprinting to Deal with Tissue Complexity in Regenerative Medicine”, MRS Bulletin, Vol. 36, pp. 1015-1019. 2011.
[54] F. Guillemot, A. Souquet, S. Catros and B. Guillotin, “Laser-Assisted Cell Printing: Principle, Physical Parameters Versus Cell Fate and Perspectives in Tissue Engineering”, Nanomedicine, Vol. 5, pp. 507-515, 2010.
[55] F. P. W. Melchels, J. Feijen and D. W. Grijpma, “A Review on Stereolithography and Its Applications in Biomedical Engineering”, Biomaterials, Vol. 31, pp. 6121-6130, 2010.
[56] J. Huang, Q. Qin and J. Wang, “A Review of Stereolithography: Processes and Systems”, Processes, Vol. 8, 1138, 2020.
[57] A. C. Burton, “Relation of Structure to Function of the Tissues of the Wall of Blood Vessels”, Physiology Rev, Vol. 34, pp.42-619, 1954.
[58] A. J. Boys, S. L. Barron, D. Tilev and R. M. Owens, “Building Scaffolds for Tubular Tissue Engineering”, Biotechnology & Bioengineering, Vol. 8, 589960, 2020.
[59] I. Holland, J. Logan, J. Shi, C. McCormick, D. Liu and W. Shu, “3D Biofabrication for Tubular Tissue Engineering”, Bio-Design & Manufacturing, Vol. 1, pp. 89-100, 2018.
[60] H. J. Jeong, H. Nam, J. Jang and S. J. Lee, “3D Biofabrication for Tubular Tissue Engineering”, Bioengineering, Vol. 7, 32, 2020.
[61] E. Tan and W. Y. Yeong, “Direct Bioprinting of Alginate-Based Tubular Constructs Using Multi-Nozzle Extrusion-Based Technique”, International Journal of Bioprinting, Vol. 1, pp. 49-56, 2015.
[62] K. Arai, D. Murata, A. R. Verissimo, Y. Mukae, M. Itoh, A. Nakamura, S. Morita, “Fabrication of Scaffold-Free Tubular Cardiac Constructs Using a Bio-3D Printer”, PLOS ONE, Vol. 15, e0243244, 2020.
[63] T. J. Hinton, A. Hudson, K. Pusch, A. Lee and A. W. Feinberg, “3D Printing PDMS Elastomer in a Hydrophilic Support Bath Via Freeform Reversible Embedding”, ACS Biomaterials Science & Engineering, Vol. 2, pp. 1781-1786, 2016.
[64] A. Kjar, B. McFarland, K. Mecham, N. Harward and Y. Huang, “Engineering of Tissue Constructs Using Coaxial Bioprinting”, Bioactive Materials, Vol. 6, pp. 460-471, 2021.
[65] I. G. Kim, S. A. Park, S. H. Lee, J. S. Choi, H. Cho, S. J. Lee, Y. W. Kwon and S. K. Kwon, “Transplantation of a 3D-Printed Tracheal Graft Combined with iPS Cell-Derived MSCs and Chondrocytes”, Scientific Reports, Vol. 10, 4326, 2020.
[66] 洪承暉,「使用微型閥並具備自動平台校正功能之三維生物列印機開發」,國立中央 大學,碩士論文,民國 107 年。
[67] L. Elviri, R. Foresti, C. Bergonzi, F. Zimetti, C. Marchi, A. Bianchera, F. Bernini, M. Silvestri and R. Bettini, “Highly Defined 3D Printed Chitosan Scaffolds Featuring Improved Cell Growth”, Biomedical Materials, Vol. 12, 45009, 2017.
[68] 邱景棟,「低溫三維列印之溫度調節演算法用於提升沉積面之垂直溫度均勻性」,國立中央大學,碩士論文,民國 109 年。
指導教授 廖昭仰(Chao-Yang Liao) 審核日期 2022-1-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明