參考文獻 |
1. R.C. Agarwal, C.C. Aggarwal, and V. Parsad. A tree projection algorithm for generation of frequent itemsets. In Journal of Parallel and Distributed Computing, 61(3): 350-371, 2001.
2. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. of the 20th International Conference Very Large Data Bases (VLDB'94), pp. 487-499, 1994.
3. M. N. Garofalakis, R. Rastogi, and K. Shim. Spirit: Sequential pattern mining with regular expression of constraints. IEEE Transactions on Knowledge and Data Engineering (TKDE), 14(3): 530-552, 2002.
4. K.Y. Huang and C.H. Chang, Asynchronous periodic patterns mining in temporal databases, In Proc. of the IASTED International Conference on Databases and Applications (DBA), pp. 43-48, February 17-19, 2004, Austria.
5. K.Y. Huang, C.H. Chang and K.Z. Lin, PROWL: An efficient frequent continuity mining algorithm on event sequences. In Proc. of 6th International Conference on Data Warehousing and Knowledge Discovery (DaWak'04), Septemper 1-3, 2004, Spain. To appear.
6. J. Han and J. Pei. Mining frequent patterns by pattern-growth: Methodology and implications. ACM SIGKDD Explorations (Special Issue on Scalable Data Mining Algorithms), 2(2): 14-20, 2000.
7. J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge Discovery: An International Journal(DMKD), 8(1): 53-87, 2004.
8. H. Mannila and H. Toivonen. Discovering generalized episodes using minimal occurrences. In Proc. of the International Conference on Knowledge Discovery and Data Mining, pp. 146-151, 1996.
9. H. Mannila, H. Toivonen and A. I. Verkamo. Discovering frequent episodes in sequences. In Proc. of the First International Conference on Knowledge Discovery and Data Mining. (KDD'95), pp. 210-215, 1995.
10. H. Mannila, H. Toivonen and A. I. Verkamo. Discovery of frequent episodes in event sequences. In Journal of the Data Mining and Knowledge Discovery, pp. 259-289, 1997.
11. R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance improvements. In Proc. of the 5th International Conference on Extending Database Technology (EDBT'96), pp. 3-17, 1996.
12. A. K. H. Tung, H. Lu, J. Han and L. Feng. Breaking the barrier of transactions: Mining inter-transaction association rules. In Proc. of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 297-301, 1999.
13. A. K. H. Tung, H. Lu, J. Han and L. Feng. Efficient mining of intertransaction association rules. IEEE Transactions on Knowledge and Data Engineering, 15(1): 43-56, 2003.
14. J. Yang, W. Wang, and P. S. Yu. Mining asynchronous periodic patterns in time series data. In Proc. of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD'00), pp. 275-279, 2000.
15. J. Yang, W. Wang, and P. S. Yu. Mining asynchronous periodic patterns in time series data. IEEE Transactions on Knowledge and Data Engineering, 15(3): 613-628, 2003.
16. M. J. Zaki. Scalable algorithms for association mining. IEEE Transactions on Knowledge and Data Engineering (TKDE), 12(3): 372-390, 2000.
17. M. Zaki. Spade: An efficient algorithm for mining frequent sequences. Machine Learning, 42(1/2):31-60, 2001.
18. M. J. Zaki and C. J. Hsiao. CHARM: An efficient algorithm for closed itemset mining. In Proc. of 2nd SIAM International Conference on Data Mining (SIAM’ 02), pp. 457-473, 2002. |