博碩士論文 108323102 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.16.203.107
姓名 成昕(Hsin Cheng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鉍摻雜至La0.6Sr0.4Co0.2Fe0.8O3 作為質子傳導型SOFC陰極之可行性研究
(Bismuth doped La0.6Sr0.4Co0.2Fe0.8O3 as cathode for proton-conducting solid oxide fuel cells)
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究透過在以燃燒合成法製作之鈣鈦礦結構La0.6-xSr0.4Co0.2Fe0.8O3陰極材料中摻雜鉍,形成La0.6-xSr0.4BixCo0.2Fe0.8O3-δ(X=0、0.1、0.2、0.3、0.4、0.5;分別標示為LSB1CF、LSB2CF、LSB3CF、LSB4CF、LSB5CF) ,以探討其作為質子傳導型固態燃料電池陰極材料的可行性。燃燒過程中經由調整LSCF前驅硝酸鹽水溶液之酸鹼值(pH值: 1、2、3、4)與甘胺酸-硝酸根比值(G/N比: 0.75、1.00、1.25、1.50),觀察經1000 °C、2 h煆燒後粉末之結晶結構,再以最佳燃燒法合成參數(G/N比、pH值)進行LSBxCF之合成,並分析其電化學性質。在LSCF實驗結果所示,在LSCF1.25/3、LSCF1.25/4、LSCF1.50/3與LSCF1.50/4等樣品中,LSCF1.50/3為所有燃燒法合成參數中結晶結構最符合作為SOFC陰極之結果,故以此參數作為後續LSBxCF合成之燃燒參數。經X光晶體繞射分析LSBxCF陰極粉末可發現,因摻雜離子半徑較小之Bi3+進入A-site,所以出現整體特徵峰的 2θ 有變大之趨勢,並且在LSB4CF、LSB5CF中出現些微雜項,其餘之參數接並未出現雜項。由四點式直流電量測導電度,LSCF雖隨著Bi的摻雜會導致電子導電度下降,但同時質子導電度會從原本無法導通質子,而隨Bi摻雜量上升而有些微提升。LSB3CF之單電池在800°C時擁有最高功率密度358.4 mW cm-2,比LSCF單電池140.6 mW cm-2高了155%,以及最低極化阻抗0.09 Ω cm2,比LSCF單電池降低25%;並且分別在700°C和600°C下皆具有最高功率密度183.5 mW cm-2、134.3 mW cm-2。
本研究結果可知,LSB3CF陰極材料可有效提升質子在陰極中之傳導,在800 ℃操作溫度之電化學性能表現良好具有最高功率密度358.4 mW/cm2,並且在700°C及600°C下皆有最佳之電化學性能表現。
摘要(英) In this study, the perovskite structure La0.6-xSr0.4Co0.2Fe0.8O3 cathode material made by the combustion synthesis method was doped with bismuth to form La0.6-xSr0.4BixCo0.2Fe0.8O3-δ(X=0 , 0.1, 0.2, 0.3, 0.4, 0.5; respectively marked as LSB1CF, LSB2CF, LSB3CF, LSB4CF) to explore its feasibility as a proton-conducting solid fuel cell cathode material. During the combustion process, the pH value (pH value: 1, 2, 3, 4) and the ratio of glycine-nitrate (G/N ratio: 0.75, 1.00, 1.25, 1.50) of the LSCF precursor nitrate aqueous solution were adjusted to observe After sintering at 1000°C for 2h, the crystalline structure of the powder is then synthesized with the best combustion method synthesis parameters (G/N ratio, pH value), and its electrochemical properties are analyzed. According to the LSCF experimental results, in the samples of LSCF 1.25/3, LSCF 1.25/4, LSCF 1.50/3 and LSCF 1.50/4, LSCF 1.50/3 is the most crystalline structure among all the combustion synthesis parameters. It conforms to the result of SOFC cathode, so this parameter is used as the combustion parameter for subsequent LSBxCF synthesis. Through X-ray crystal diffraction analysis of LSBxCF cathode powder, it can be found that the 2θ of the overall characteristic peak tends to become larger due to the smaller Bi3+ doped ion radius entering the A-site, and there are some minor miscellaneous items in LSB4CF and LSB5CF. The other parameter connections did not appear miscellaneous. The conductivity is measured by the four-point direct current electric quantity, LSCF will cause the electronic conductivity to decrease with the doping of Bi, but at the same time, the proton conductivity will never be able to conduct protons, and will slightly increase with the increase of the doping amount.. The LSB3CF single cell has the highest power density of 358.4 mW cm-2 at 800°C, which is 155% higher than the LSCF single cell 140.6 mW cm-2, and the lowest polarization impedance of 0.09 Ω cm2, which is 25% lower than the LSCF single cell; And it has the highest power density of 183.5 mW cm-2 and 134.3 mW cm-2 at 700°C and 600°C, respectively. The results of this study show that the LSB3CF cathode material can effectively enhance the conduction of protons in the cathode, and the electrochemical performance is good at the operating temperature of 800 ℃. It has the highest power density of 358.4 mW/cm2, and it has the highest power density at 700°C and 600°C. The best electrochemical performance.
關鍵字(中) ★ 固態氧化物燃料電池
★ 鑭鍶鈷鐵氧化物
★ 陰極材料
★ 鉍摻雜
★ 質子傳導型陰極
關鍵字(英) ★ Solid oxide fuel cell
★ Lanthanum-strontium-cobalt-ferrite oxide
★ cathode material
★ Bismuth doping
★ Proton-conducting cathode
論文目次 摘要 i
Abstract iii
致謝 iv
目錄 v
圖目錄 ix
表目錄 xiv
第一章 緒論 1
1-1 前言 1
1-2 問題所在 2
1-3 解決方法 3
1-4論文大綱 3
第二章 理論基礎與文獻回顧 5
2-1固態氧化物燃料電池(SOFC) 5
2-1-1固態氧化物燃料電池原理與簡介 5
2-1-2固態氧化物燃料電池元件 7
2-1-3 固態氧化物燃料電池支撐類型[29] 9
2-2 電化學分析原理 10
2-2-1 直流電極化曲線(I-V Curve)原理 11
2-2-2 電化學交流阻抗頻譜(EIS)原理 13
2-3陰極元件 16
2-3-1 陰極傳導機制 17
2-3-2 陰極晶體結構 18
2-3-3 容忍因子之計算 20
2-3-4 陰極材料製備方式 21
2-4 文獻回顧 23
2-4-1 LSCF陰極的摻雜研究 24
2-4-2 提升LSCF陰極性能之相關研究 25
第三章 實驗方法 27
3-1 實驗藥品與原料 27
3-2樣品製備、條件與實驗流程 27
3-2-1 電解質粉末製備流程 27
3-2-2 陽極基板製備流程 28
3-2-3 陰極粉末製備流程 28
3-2-4 陰極樣品製備流程 29
3-2-5 陰極膏製備流程 29
3-2-6 單電池製備 30
3-3 分析及測試儀器與設備 30
3-3-1 X光晶體繞射儀(X-Ray diffraction; XRD) 30
3-3-2 掃描式電子顯微鏡(Scanning Electron Microscope; SEM) 32
3-3-3 導電性量測 32
3-3-4 直流極化曲線測試平台 33
3-3-5 電化學交流阻抗頻譜儀 33
第四章 實驗結果 35
4-1 X光晶體繞射分析 35
4-1-1 LSCF之X光繞射圖譜 35
4-1-2 LSBxCF之X光繞射圖譜 35
4-2陰極材料導電性量測 36
4-2-1 電子導電度 36
4-2-2 質子導電度 36
4-3 單電池I-V 性能曲線測量與分析 37
4-4 電化學交流阻抗頻譜分析 37
4-5掃描式電子顯微鏡之形貌觀察 38
4-5-1 低倍率形貌(10000 x) 38
4-5-2 高倍率形貌(30000x) 38
第五章 實驗結果討論 39
5-1燃燒合成法製備LSCF與LSBxCF粉末之探討 39
5-1-1 LSCF 39
5-2-2 LSBxCF 39
5-2陰極樣品特性分析之探討 40
5-3全電池性能分析 40
第六章 結論與未來工作 42
6-1 結論 42
6-2 未來工作 43
參考文獻 44
圖片 49
表目錄 83
參考文獻 1. H.-I. Ji, J.-H. Lee, J.-W. Son, K.J. Yoon, S. Yang, and B.-K. Kim, “Protonic ceramic electrolysis cells for fuel production: a brief review”, Journal of the Korean Ceramic Society. 57: p. 480-494, 2020
2. W.R. Grove, “XXIV. On voltaic series and the combination of gases by platinum”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 14(86-87): p. 127-130, 1839
3. Y.A. Cengel, M.A. Boles, and M. Kanoglu, Thermodynamics: an engineering approach. Vol. 5, McGraw-hill New York. 2011
4. J. Hou, Z. Zhu, J. Qian, and W. Liu, “A new cobalt-free proton-blocking composite cathode La2NiO4+ δ–LaNi0. 6Fe0. 4O3− δ for BaZr0. 1Ce0. 7Y0. 2O3− δ-based solid oxide fuel cells”, Journal of Power Sources. 264: p. 67-75, 2014
5. L. Bi, S. Boulfrad, and E. Traversa, “Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides”, Chemical Society Reviews. 43(24): p. 8255-8270, 2014
6. S. Badwal, S. Giddey, C. Munnings, and A. Kulkarni, “Review of progress in high temperature solid oxide fuel cells”, ChemInform. 46(31): p. no-no, 2015
7. J. Kim, S. Sengodan, G. Kwon, D. Ding, J. Shin, M. Liu, and G. Kim, “Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells”, ChemSusChem. 7(10): p. 2811-2815, 2014
8. Y. Xia, Z. Jin, H. Wang, Z. Gong, H. Lv, R. Peng, W. Liu, and L. Bi, “A novel cobalt-free cathode with triple-conduction for proton-conducting solid oxide fuel cells with unprecedented performance”, Journal of Materials Chemistry A. 7(27): p. 16136-16148, 2019
9. Y. Niu, J. Sunarso, F. Liang, W. Zhou, Z. Zhu, and Z. Shao, “A comparative study of oxygen reduction reaction on Bi-and La-doped SrFeO3− δ perovskite cathodes”, Journal of the Electrochemical Society. 158(2): p. B132, 2010
10. T. Horita, K. Yamaji, N. Sakai, Y. Xiong, T. Kato, H. Yokokawa, and T. Kawada, “Imaging of oxygen transport at SOFC cathode/electrolyte interfaces by a novel technique”, Journal of Power Sources. 106(1-2): p. 224-230, 2002
11. J. Sunarso, S.S. Hashim, N. Zhu, and W. Zhou, “Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cell and membrane reactor: a review”, Progress in Energy and Combustion Science. 61: p. 57-77, 2017
12. K. Kreuer, “Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides”, Solid State Ionics. 125(1-4): p. 285-302, 1999
13. F. He, M. Liang, W. Wang, R. Ran, G. Yang, W. Zhou, and Z. Shao, “High-performance proton-conducting fuel cell with b-site-deficient perovskites for all cell components”, Energy & Fuels. 34(9): p. 11464-11471, 2020
14. W. Wang, D. Medvedev, and Z. Shao, “Gas Humidification Impact on the Properties and Performance of Perovskite‐Type Functional Materials in Proton‐Conducting Solid Oxide Cells”, Advanced Functional Materials. 28(48): p. 1802592, 2018
15. M.R. Somalu, N.W. Norman, and A. Muchtar, “A short review on the proton conducting electrolytes for solid oxide fuel cell applications”, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. 52(2): p. 115-122, 2018
16. L. Bi, E.H. Da′as, and S.P. Shafi, “Proton-conducting solid oxide fuel cell (SOFC) with Y-doped BaZrO3 electrolyte”, Electrochemistry Communications. 80: p. 20-23, 2017
17. 衣寶廉, 燃料電池: 原理與應用. 五南圖書出版股份有限公司. 2005
18. S.P. Shaikh, A. Muchtar, and M.R. Somalu, “A review on the selection of anode materials for solid-oxide fuel cells”, Renewable and Sustainable Energy Reviews. 51: p. 1-8, 2015
19. W. Zhu and S. Deevi, “A review on the status of anode materials for solid oxide fuel cells”, Materials Science and Engineering: A. 362(1-2): p. 228-239, 2003
20. M. Zunic, L. Chevallier, A. Radojkovic, G. Brankovic, Z. Brankovic, and E. Di Bartolomeo, “Influence of the ratio between Ni and BaCe0. 9Y0. 1O3− δ on microstructural and electrical properties of proton conducting Ni–BaCe0. 9Y0. 1O3− δ anodes”, Journal of alloys and compounds. 509(4): p. 1157-1162, 2011
21. B.H. Rainwater, M. Liu, and M. Liu, “A more efficient anode microstructure for SOFCs based on proton conductors”, international journal of hydrogen energy. 37(23): p. 18342-18348, 2012
22. L. Bi, E. Fabbri, and E. Traversa, “Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs)”, Electrochemistry communications. 16(1): p. 37-40, 2012
23. K. Xie, R. Yan, and X. Liu, “A novel anode supported BaCe0. 4Zr0. 3Sn0. 1Y0. 2O3− δ electrolyte membrane for proton conducting solid oxide fuel cells”, Electrochemistry communications. 11(8): p. 1618-1622, 2009
24. H. Moon, S.D. Kim, E.W. Park, S.H. Hyun, and H.S. Kim, “Characteristics of SOFC single cells with anode active layer via tape casting and co-firing”, International Journal of Hydrogen Energy. 33(11): p. 2826-2833, 2008
25. J. Patakangas, Y. Ma, Y. Jing, and P. Lund, “Review and analysis of characterization methods and ionic conductivities for low-temperature solid oxide fuel cells (LT-SOFC)”, Journal of Power Sources. 263: p. 315-331, 2014
26. S. Badwal and K. Foger, “Solid oxide electrolyte fuel cell review”, Ceramics International. 22(3): p. 257-265, 1996
27. C. Sun, R. Hui, and J. Roller, “Cathode materials for solid oxide fuel cells: a review”, Journal of Solid State Electrochemistry. 14(7): p. 1125-1144, 2010
28. A. Nikonov, K. Kuterbekov, K.Z. Bekmyrza, and N. Pavzderin, “A brief review of conductivity and thermal expansion of perovskite-related oxides for SOFC cathode”, Eurasian Journal of Physics and Functional Materials. 2(3): p. 274-292, 2018
29. N.Q. Minh, “Ceramic fuel cells”, Journal of the American Ceramic Society. 76(3): p. 563-588, 1993
30. N.Q. Minh, “Solid oxide fuel cell technology—features and applications”, Solid State Ionics. 174(1-4): p. 271-277, 2004
31. A.J. Appleby, “Fuel cell handbook”, 1988
32. S.M. Haile, “Fuel cell materials and components”, Acta materialia. 51(19): p. 5981-6000, 2003
33. R. O′hayre, S.-W. Cha, W. Colella, and F.B. Prinz, Fuel cell fundamentals. John Wiley & Sons. 2016
34. E. Povoden-Karadeniz, Thermodynamic database of the La-Sr-Mn-Cr-O oxide system and applications to solid oxide fuel cells. 2008, ETH Zurich.
35. N.-Y. Hsu, S.-C. Yen, K.-T. Jeng, and C.-C. Chien, “Impedance studies and modeling of direct methanol fuel cell anode with interface and porous structure perspectives”, Journal of power sources. 161(1): p. 232-239, 2006
36. L. Fan and P.-C. Su, “Layer-structured LiNi0. 8Co0. 2O2: a new triple (H+/O2−/e−) conducting cathode for low temperature proton conducting solid oxide fuel cells”, Journal of Power Sources. 306: p. 369-377, 2016
37. S.B. Adler, “Factors governing oxygen reduction in solid oxide fuel cell cathodes”, Chemical reviews. 104(10): p. 4791-4844, 2004
38. T. Ishihara, Perovskite oxide for solid oxide fuel cells. Springer Science & Business Media. 2009
39. H. Arai, T. Yamada, K. Eguchi, and T. Seiyama, “Catalytic combustion of methane over various perovskite-type oxides”, Applied catalysis. 26: p. 265-276, 1986
40. S. Choi and G. Kim, “Electrochemical Properties of La4Ni3O10-GDC Composite Cathode by Facile Sol-gel Method for IT-SOFCs”, Journal of the Korean Ceramic Society. 51(4): p. 265-270, 2014
41. S. Choi and G. Kim, “Electrochemical Properties of La 4 Ni 3 O 10-GDC Composite Cathode by Facile Sol-gel Method for IT-SOFCs”, Journal of the Korean Ceramic Society. 51(4): p. 265-270, 2014
42. U.S. Schubert and N. Hüsing, Synthesis of inorganic materials. John Wiley & Sons. 2019
43. X. Fang, G. Zhu, C. Xia, X. Liu, and G. Meng, “Synthesis and properties of Ni–SDC cermets for IT–SOFC anode by co-precipitation”, Solid State Ionics. 168(1-2): p. 31-36, 2004
44. R. Pelosato, C. Cristiani, G. Dotelli, M. Mariani, A. Donazzi, and I.N. Sora, “Co-precipitation synthesis of SOFC electrode materials”, international journal of hydrogen energy. 38(1): p. 480-491, 2013
45. S.Y. Lee, J. Yun, and W.-P. Tai, “Synthesis of Ni-doped LaSrMnO3 nanopowders by hydrothermal method for SOFC interconnect applications”, Advanced Powder Technology. 29(10): p. 2423-2428, 2018
46. W. Jang, S. Hyun, and S. Kim, “Preparation of YSZ/YDC and YSZ/GDC composite electrolytes by the tape casting and sol-gel dip-drawing coating method for low-temperature SOFC”, Journal of Materials Science. 37(12): p. 2535-2541, 2002
47. P.G. Keech, D.E. Trifan, and V.I. Birss, “Synthesis and performance of sol-gel prepared Ni-YSZ cermet SOFC anodes”, Journal of The Electrochemical Society. 152(3): p. A645, 2005
48. W. Zhou, Z. Shao, R. Ran, H. Gu, W. Jin, and N. Xu, “LSCF nanopowder from Cellulose–Glycine‐Nitrate process and its application in Intermediate‐Temperature Solid‐Oxide fuel cells”, Journal of the American Ceramic Society. 91(4): p. 1155-1162, 2008
49. L. Da Conceicao, A.M. Silva, N.F. Ribeiro, and M.M. Souza, “Combustion synthesis of La0. 7Sr0. 3Co0. 5Fe0. 5O3 (LSCF) porous materials for application as cathode in IT-SOFC”, Materials Research Bulletin. 46(2): p. 308-314, 2011
50. M. Backhaus-Ricoult, K. Adib, T.S. Clair, B. Luerssen, L. Gregoratti, and A. Barinov, “In-situ study of operating SOFC LSM/YSZ cathodes under polarization by photoelectron microscopy”, Solid State Ionics. 179(21-26): p. 891-895, 2008
51. A.J. Schuler, Z. Wuillemin, A. Hessler-Wyser, and J. Van Herle, “Sulfur as pollutant species on the cathode side of a SOFC system”, ECS Transactions. 25(2): p. 2845, 2009
52. J. Mizusaki, Y. Mima, S. Yamauchi, K. Fueki, and H. Tagawa, “Nonstoichiometry of the perovskite-type oxides La1− xSrxCoO3− δ”, Journal of Solid State Chemistry. 80(1): p. 102-111, 1989
53. K. Lee and A. Manthiram, “Effect of cation doping on the physical properties and electrochemical performance of Nd0. 6Sr0. 4Co0. 8M0. 2O3− δ (M= Ti, Cr, Mn, Fe, Co, and Cu) cathodes”, Solid State Ionics. 178(13-14): p. 995-1000, 2007
54. B. Fan, J. Yan, and X. Yan, “The ionic conductivity, thermal expansion behavior, and chemical compatibility of La0. 54Sr0. 44Co0. 2Fe0. 8O3-δ as SOFC cathode material”, Solid state sciences. 13(10): p. 1835-1839, 2011
55. 葉哲均, 甘胺酸-硝酸燃燒合成法製備固態氧化物燃料電池陰極材料 La0. 8Sr0. 2MnO3, La0. 6Sr0. 4Co0. 2Fe0. 8O3 與其電化學性質之研究. 2014, National Central University.
56. F.H. Taylor, J. Buckeridge, and C.R.A. Catlow, “Screening divalent metals for A-and B-site dopants in LaFeO3”, Chemistry of Materials. 29(19): p. 8147-8157, 2017
57. S. Guo, H. Wu, F. Puleo, and L.F. Liotta, “B-site metal (Pd, Pt, Ag, Cu, Zn, Ni) promoted La1− xSrxCo1− yFeyO3–δ perovskite oxides as cathodes for IT-SOFCs”, Catalysts. 5(1): p. 366-391, 2015
58. W. Jia, Z. Huang, W. Sun, L. Wu, L. Zheng, Y. Wang, J. Huang, X. Yang, M. Lv, and L. Ge, “Flexible A-site doping La0. 6-xMxSr0. 4Co0. 2Fe0. 8O3 (M= Ca, Ba, Bi; x= 0, 0.1, 0.2) as novel cathode material for intermediate-temperature solid oxide fuel cells: A first-principles study and experimental exploration”, Journal of Power Sources. 490: p. 229564, 2021
59. K.-R. Lee, C.-J. Tseng, S.-C. Jang, J.-C. Lin, K.-W. Wang, J.-K. Chang, T.-C. Chen, and S.-W. Lee, “Fabrication of anode-supported thin BCZY electrolyte protonic fuel cells using NiO sintering aid”, International Journal of Hydrogen Energy. 44(42): p. 23784-23792, 2019
60. 葉俊廷, “SOFC 關鍵材料之製備及其應用於刮刀成型技術製備 IT-SOFC 之特性研究”, 臺北科技大學工程科技研究所學位論文: p. 1-130, 2012
61. R. Peng, T. Wu, W. Liu, X. Liu, and G. Meng, “Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes”, Journal of Materials Chemistry. 20(30): p. 6218-6225, 2010
指導教授 林景崎(Jing-Chie Lin) 審核日期 2022-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明