博碩士論文 106684002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.117.182.179
姓名 高嘉謙(Jia-Cian Gao)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 走向單一路徑地動預估式
(Toward Single-Path Ground Motion Prediction Equation)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 過去的地震危害度分析所選用的傳統地動預估式(Ground-Motion Prediction Equation, GMPE)是採用大區域內多個測站記錄到多個不同地震源的地動紀錄所建立的,因此包含過多的地動值變異性,會造成危害度過估。本研究提出一新方法來建立場址相依地動預估式(site-dependent GMPE),期能降低地動預估式中的地動值不確定性,以避免在機率式地震危害度分析中做成過度保守的估計。本研究以牡丹水庫場址為例,篩選距離工址70公里範圍內且與工址有相似場址特性的測站所收錄之地動記錄來建立該地區地殼地震的場址相依地動預估式,其與台灣現有的區域地動預估式相比,地動值標準差明顯降低許多。本研究也以場址相依地動預估式建立均佈度危害反應譜,其結果與以區域地動預估計算的結果相比,有大幅下降的情形。
透過場址相依地動預估式來進行分析,雖可降低場址效應,然而地震波的衰減還受震源特性及波傳遞路徑影響,故在震源參數上,本研究進一步將震源分區加入地動預估式,建立小震源區對小場址範圍的地動預估式,又稱場址相依暨小震源分區地動預估式(site-dependent with small source zone GMPE),其與場址相依地動預估式相比下,地動值變異性標準差再降低約10%,而均佈危害度反應譜也因此下修。
本研究再進一步進行單一測站的地動預估式與小震源區對單一測站的地動預估式研究,建立場址特定地動預估式(site-specific GMPE)與場址特定暨小震源分區地動預估式(site-specific with small source zone GMPE),探討更接近理想中的單一路徑地動預估式。然而在資料量的限制與地動預估式的穩健特性權衡下,本研究初步得知場址相依或場址相依暨小震源分區地動預估式具可行性,可以為重要基礎設施的設計或安全評估提供更準確、更合理的地動值預估。
摘要(英) Traditional ground-motion prediction equations (GMPEs) are based on datasets of ground-motion parameters recorded at multiple stations and different earthquakes in various source regions. It causes excessive ground-motion variability and leads to increasing seismic hazard estimations. This study proposes a new method to establish a site-dependent GMPE, which reduces the uncertainty of ground-motion value in the GMPE and avoids over-conservative estimation in probabilistic seismic hazard analysis (PSHA). Take the Mudan Reservoir site as an example, this study selected ground-motion records with similar site conditions from the stations within 70 km of the studied site to build a site-dependent ground-motion prediction model for crustal earthquakes in this region. This site-dependent GMPE set obtains a significantly smaller standard deviation compared with the existing regional GMPEs from the Taiwan data set. This study also builds a uniform hazard response spectrum with a site-dependent GMPE, and the result is sharply decreased compared with that with the regional GMPE.
Although analyzing through the site-dependent GMPEs can reduce the site effect, the attenuation of seismic waves is also affected by source characteristics and wave propagation paths. Therefore, this study further added seismic source zones to the GMPE and established a small source zone to small site area model, which is also known as site-dependent with small source zone GMPE. The standard deviation of this GMPE is reduced by about 10% compared with site-dependent one, and the uniform hazard response spectrum is also decreased.
In this study, we also conducted a research on site-specific GMPEs and site-specific with small source zone GMPEs to discuss more ideal single-path GMPEs. However, under the limitation of data numbers and the robustness of GMPEs, we only got a preliminary result that indicates the site-dependent GMPEs or site-dependent with small source zone GMPEs are feasible, and they can provide a more accurate and reasonable prediction of ground-motion levels for the design or safety evaluation of important infrastructures.
關鍵字(中) ★ 地動預估式
★ 機率式地震危害度分析
★ 場址相依
關鍵字(英) ★ Ground Motion Prediction Equation
★ probabilistic seismic hazard analysis
★ site-dependent
論文目次 目錄
摘要 II
Abstract III
致謝 V
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
1-1 研究動機、目的與文獻回顧 1
1-1-1 傳統地動預估式 2
1-1-2 遍歷性假設地動預估式 2
1-1-3 變異數拆解 3
1-1-4 全球地動預估式 5
1-1-5 區域地動預估式 6
1-1-6 非遍歷性假設地動預估式 6
1-1-7 小結 8
1-2 研究流程與內容 8
第二章 資料蒐集與處理 12
2-1 地震規模參數 13
2-2 震源機制參數 14
2-3 距離參數 14
2-4 測站場址參數 15
2-5 地動參數建立 16
第三章 地動預估式模型與迴歸分析方法 19
3-1 地動預估式模型建立 19
3-2 地動預估式迴歸分析方法 21
3-2-1 最大概似法 22
3-2-2 混合效應模型 22
3-2-3 程式語言R 23
第四章 場址相依地動預估式 25
4-1 場址相依地動預估式 25
4-2 殘差值分析 26
4-3 場址相依均布危害度反應譜 27
第五章 場址相依暨小震源分區地動預估式 44
5-1 震源分區 44
5-2 場址相依地動預估式引入小震源分區 44
5-3 以場址相依暨小震源分區地動預估式計算均布危害度反應譜 46
第六章 場址特定暨小震源分區地動預估式 69
6-1 場址特定地動預估式 69
6-2 場址特定地動預估式引入小震源分區 70
第七章 討論 88
7-1 場址相依資料之選取範圍 88
7-2 檢驗場址相依地動預估式 88
7-3 場址相依地動預估式與其他地動預估式比較 89
7-4 小震源分區係數與標準差於危害度的平衡結果 90
7-5 場址特定與場址特定暨小震源分區地動預估式比較 91
7-6 小震源分區專屬係數的影響與特定路徑的Qs值的相關性 93
7-7 小結 94
第八章 結論與建議 112
8-1 結論 112
8-2 建議 113
參考文獻 114
參考文獻 Abrahamson, N.A., Hollenback, J.C., 2012. Application of single station sigma ground motion prediction equations in practice. Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, paper 2536.
Abrahamson, N.A., Kuehn, N.M., Walling, M., Landwehr, N., 2019. Probabilistic seismic hazard analysis in California using nonergodic ground‐motion models. Bulletin of the Seismological Society of America, 109(4), 1235-1249.
Abrahamson, N.A., Silva, W.J., 1997. Empirical response spectral attenuation relations for shallow crustal earthquakes. Seismological Research Letters, 68 (1), 94-127. https://doi.org/10.1785/gssrl.68.1.94
Abrahamson, N.A., Silva, W.J., 2008. Summary of the Abrahamson & Silva NGA ground-motion relations. Earthquake Spectra, 24(1), 67-97.
Abrahamson, N.A., Silva, W.J., Kamai, R., 2014. Summary of the ASK14 ground motion relation for active crustal regions. Earthquake Spectra, 30(3), 1025-1055. https://doi.org/10.1193/070913EQS198M.
Abrahamson, N.A., Youngs, R.R., 1992. A stable algorithm for regression analyses using the random effects model. Bulletin of the Seismological Society of America, 82(1), 505-510.
Akkar, S., Çağnan, Z., 2010. A local ground-motion predictive model for Turkey, and its comparison with other regional and global ground-motion models. Bulletin of the Seismological Society of America, 100(6), 2978-2995.
Al Atik, L., Abrahamson, N.A., 2010. An improved method for nonstationary spectral matching. Earthquake Spectra, 26(3), 601-617. https://doi.org/10.1193/1.3459159.
Allen, T.I., Wald, D.J., 2009. On the use of high-resolution topographic data as a proxy for seismic site conditions (Vs30). Bulletin of the Seismological Society of America, 99(2A), 935-943.
Ameri, G., Hollender, F., Perron, V., Martin, C., 2017. Site-specific partially nonergodic PSHA for a hard-rock critical site in southern France: adjustment of ground motion prediction equations and sensitivity analysis. Bulletin of Earthquake Engineering, 15(10), 4089-4111.
Anderson, J.G., Brune, J.N., 1999. Probabilistic seismic hazard analysis without the ergodic assumption. Seismological Research Letters, 70(1), 19-28. https://doi.org/10.1785/gssrl.70.1.19.
Anderson, J.G., Brune, J.N., Anooshehpoor, R., Ni, S.D., 2000. New ground motion data and concepts in seismic hazard analysis. Current Science 79(9), 1278-1290.
Anderson, J.G., Lee, Y.J., Zeng, Y. H., Day, S., 1996. Control of strong motion by the upper 30 meters. Bulletin of the Seismological Society of America, 86(6), 1749-1759.
Anderson, J.G., Uchiyama, Y., 2011. A methodology to improve ground-motion prediction equations by including path corrections. Bulletin of the Seismological Society of America, 101(4), 1822-1846. https://doi.org/10.1785/0120090359.
Ashford, S. A., Sitar, N., 1997. Analysis of topographic amplification of inclined shear waves in a steep coastal bluff. Bulletin of the Seismological Society of America, 87(3), 692-700.
Athanasopoulos, G.A., Pelekis, P.C., Leonidou, E.A., 1999. Effects of surface topography on seismic ground response in the Egion (Greece) 15 June 1995 earthquake. Soil Dynamics and Earthquake Engineering, 18(2), 135-149.
Atik, L.A., Abrahamson, N., Bommer, J.J., Scherbaum, F., Cotton, F., Kuehn, N., 2010. The variability of ground-motion prediction models and its components. Seismological Research Letters, 81(5), 794-801.
Atkinson, G.M., 2006. Single-station sigma. Bulletin of the Seismological Society of America, 96(2), 446-455. https://doi.org/10.1785/0120050137.
Bindi, D., Pacor, F., Luzi, L., Puglia, R., Massa, M., Ameri, G., Paolucci, R., 2011. Ground motion prediction equations derived from the Italian strong motion database. Bulletin of Earthquake Engineering, 9(6), 1899-1920.
Bommer, J.J., Abrahamson, N.A., 2006. Why do modern probabilistic seismic-hazard analyses often lead to increased hazard estimates? Bulletin of the Seismological Society of America, 96(6), 1967-1977. https://doi.org/10.1785/0120060043.
Bommer, J.J., Acevedo, A.B., 2004. The use of real earthquake accelerograms as input to dynamic analysis. Journal of Earthquake Engineering, 8(spec01), 43-91.
Boore, D.M., Watson-Lamprey, J., Abrahamson, N.A., 2006. Orientation-independent measures of ground motion. Bulletin of the seismological Society of America, 96(4A), 1502-1511.
Boore, D.M., Atkinson, G.M., 2008. Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthquake spectra, 24(1), 99-138.
Boore, D.M., Joyner, W.B., Fumal, T.E., 1997. Equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes: A summary of recent work. Seismological Research Letters, 68(1), 128-153.
Boore, D.M., Stewart, J.P., Seyhan, E., Atkinson, G.M., 2014. NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthquake Spectra, 30(3), 1057-1085. https://doi.org/10.1193/070113EQS184M.
Bragato, P.L., Slejko, D., 2005. Empirical ground-motion attenuation relations for the eastern Alps in the magnitude range 2.5–6.3. Bulletin of the Seismological Society of America, 95(1), 252-276.
Brillinger, D.R., Preisler, H.K., 1984. An exploratory analysis of the Joyner-Boore attenuation data. Bulletin of the Seismological Society of America, 74(4), 1441-1450.
Brillinger, D.R., Preisler, H.K., 1985. Further analysis of the Joyner-Boore attenuation data. Bulletin of the Seismological Society of America, 75(2), 611-614.
Campbell, K.W., 1997. Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra. Seismological Research Letters, 68(1), 154-179.
Campbell, K.W., Bozorgnia, Y., 2003. Updated near-source ground-motion (attenuation) relations for the horizontal and vertical components of peak ground acceleration and acceleration response spectra. Bulletin of the Seismological Society of America, 93(1), 314-331.
Campbell, K.W., Bozorgnia, Y., 2008. NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthquake Spectra, 24(1), 139-171.
Campbell, K.W., Bozorgnia, Y., 2014. NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra. Earthquake Spectra, 30(3), 1087-1115. https://doi.org/10.1193/062913EQS175M.
Celebi, M., Prince, J., Dietel, C., Onate, M., Chavez, G., 1987. The culprit in Mexico City—amplification of motions. Earthquake Spectra, 3(2), 315-328.
Chao, S.H., Chiou, B., Hsu, C.C., Lin, P.S., 2020. A horizontal ground-motion model for crustal and subduction earthquakes in Taiwan. Earthquake Spectra, 36(2), 463-506.
Chen, Y.H., Tsai, C.C.P., 2002. A new method for estimation of the attenuation relationship with variance components. Bulletin of the Seismological Society of America, 92(5), 1984-1991. https://doi.org/10.1785/0120010205.
Cheng, C.T., Hsieh, P.S., Lin, P.S., Yen, Y.T., Chan, C.H., 2015. Probability seismic hazard mapping of Taiwan. Encyclopedia of Earthquake Engineering, 10, 1-25. https://doi.org/10.1007/978-3-642-36197-5_100-1.
Chiou, B.J., Youngs, R.R, 2008. An NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake spectra, 24(1), 173-215.
Chiou, B.S.J., Youngs, R.R., 2014. Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 30(3), 1117-1153. https://doi.org/10.1193/072813EQS219M.
Cornell, C.A., 1968. Engineering seismic risk analysis. Bulletin of the seismological society of America, 58(5), 1583-1606.
Dawood, H.M., Rodriguez‐Marek, A., 2013. A method for including path effects in ground‐motion prediction equations: An example using the Mw 9.0 Tohoku earthquake aftershocks. Bulletin of the Seismological Society of America, 103(2B), 1360-1372.
Gao, J.C., Lee, C.T., 2014. Considering both aleatory variability and epistemic variability in probabilistic seismic hazard analysis. In AGU Fall Meeting, S31C-4444.
Hanks, T.C., H. Kanamori., 1979. A moment magnitude scale. Journal of Geophysical Research, 84(5), 2348-2350, 9B0059, doi:10.1029/JB084iB05p02348.
Heaton, T., Tajima, F., Mori, A.W., 1986. Estimating ground motions using recorded accelerograms. Surveys in Geophysics, 8, 25-83.
Idriss, I.M, 1991. Earthquake ground motions at soft soil sites. International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 2265-2273.
Idriss, I.M., 2008. An NGA empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes, Earthquake Spectra, 24(1), 216-242.
Idriss, I.M., 2014. An NGA-West2 empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes. Earthquake Spectra, 30(3), 1155-1177. https://doi.org/10.1193/070613EQS195M.
Jibson, R., 1987. Summary of research on the effects of topographic amplification of earthquake shaking on slope stability. US Geological Survey, 87-269.
Joyner, W.B., Boore, D.M., 1981. Peak horizontal acceleration and velocity from strong-motion records including records from the 1979 Imperial Valley, California, earthquake. Bulletin of the seismological Society of America, 71(6), 2011-2038.
Kaklamanos, J., Baise, L.G., Boore, D.M., 2011. Estimating unknown input parameters when implementing the NGA ground-motion prediction equations in engineering practice. Earthquake Spectra, 27(4), 1219-1235.
Kao, H., Liu, Y.H., Jian, P.R., 2001. Source parameters of regional earthquakes in Taiwan: January-December, 1997. Terrestrial, Atmospheric and Oceanic Sciences, 12(2), 431-439.
Kohrangi, M., Kotha, S.R., Bazzurro, P., 2021. Impact of partially non-ergodic site-specific probabilistic seismic hazard on risk assessment of single buildings. Earthquake Spectra, 37(1), 409-427.
Kotha, S.R., Bindi, D., Cotton, F., 2016. Partially non-ergodic region specific GMPE for Europe and Middle-East. Bulletin of Earthquake Engineering, 14(4), 1245-1263.
Kuehn, N.M., Scherbaum, F., 2016. A partially non-ergodic ground-motion prediction equation for Europe and the Middle East. Bulletin of Earthquake Engineering, 14(10), 2629-2642.
Kuehn, N.M., Abrahamson, N.A., Walling, M.A., 2019. Incorporating nonergodic path effects into the NGA‐West2 ground‐motion prediction equations. Bulletin of the Seismological Society of America, 109(2), 575-585.
Kuehn, N.M., Abrahamson, N.A., 2020. Spatial correlations of ground motion for non‐ergodic seismic hazard analysis. Earthquake Engineering & Structural Dynamics, 49(1), 4-23.
Kuo, C.H., Chen, C.T., Lin, C.M., Wen, K.L., Huang, J.Y., Chang, S.C., 2016. S-wave velocity structure and site effect parameters derived by microtremor arrays in the western plain of Taiwan. Journal of Asian Earth Sciences, 128, 27-41.
Kuo, C.H., Wen, K.L., Hsieh, H.H., Lin, C.M., Chang, T.M., Kuo, K.W., 2012. Site classification and Vs30 estimation of free-field TSMIP stations using the logging data of EGDT. Engineering Geology, 129, 68-75. DOI: 10.1016/j.enggeo.2012.01.013
Landwehr, N., Kuehn, N.M., Scheffer, T., Abrahamson, N.A., 2016. A nonergodic ground-motion model for California with spatially varying coefficients, Bulletin of the Seismological Society of America, 106(6), 2574-2583.
Lanzano, G., D’Amico, M., Felicetta, C., Puglia, R., Luzi, L., Pacor, F., Bindi, D., 2016. Ground‐motion prediction equations for region‐specific probabilistic seismic‐hazard analysis. Bulletin of the Seismological Society of America, 106(1), 73-92.
Lanzano, G., D′Amico, M., Felicetta, C., Luzi, L., Puglia, R., 2017. Update of the single-station sigma analysis for the Italian strong-motion stations. Bulletin of Earthquake Engineering, 15(6), 2411-2428.
Lee, C.T., 1999. Neotectonics and active faults in Taiwan. Workshop on Disaster Prevention/Management and Green Technology, Foster City, California, U.S.A., 61-74.
Lee, C.T., 2008. Factors affecting topographic amplification - example from Taiwan. EGU General Assembly, Vienna, Australia, April.
Lee, C.T., Cheng, C.T., Liao, C.W., Tsai, Y.B., 2001. Site classification of Taiwan free-field strong-motion stations. Bulletin of the Seismological Society of America, 91(5), 1283-1297. https://doi.org/10.1785/0120000736.
Lee, C.T., Tsai, B.R., 2008. Mapping Vs30 in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 19(6), 671-682.
Lin, P.S., Lee, C.T., 2008. Ground-motion attenuation relationships for subduction-zone earthquakes in northeastern Taiwan. Bulletin of the Seismological Society of America, 98(1), 220-240. https://doi.org/10.1785/0120060002.
Lin, P.S., Chiou, B.S.J., Abrahamson, N.A., Walling, M., Lee, C.T., Cheng, C.T., 2011a. Repeatable source, site, and path effects on the standard deviation for empirical ground-motion prediction models. Bulletin of the Seismological Society of America, 101(5), 2281-2295. https://doi.org/10.1785/0120090312.
Lin, P.S., Lee, C.T., Cheng, C.T., 2011b. Response spectral attenuation relations for shallow crustal earthquakes in Taiwan. Engineering Geology, 121(3-4), 150-164. https://doi.org/10.1016/j.enggeo.2011.04.019.
Liu, K.S., Shin, T.C., Tsai, Y.B., 1999. A free-field strong-motion network in Taiwan: TSMIP. Terrestrial, Atmospheric and Oceanic Sciences, 10(2), 377-396.
Luzi, L., Bindi, D., Puglia, R., Pacor, F., Oth, A., 2014. Single-station sigma for Italian strong-motion stations. Bulletin of the Seismological Society of America, 104(1), 467-483. https://doi.org/10.1785/0120130089.
Mohraz, B., 1976. A study of earthquake response spectra for different geological conditions. Bulletin of the Seismological Society of America, 66(3), 915-935.
Morikawa, N., Kanno, T., Narita, A., Fujiwara, H., Okumura, T., Fukushima, Y., Guerpinar, A., 2008. Strong motion uncertainty determined from observed records by dense network in Japan. Journal of Seismology, 12(4), 529-546.
Newmark, N.M., Hall, W.J., 1982. Earthquake spectra and design. Earthquake Engineering Research Institute, Berkeley, CA.
Phung, V.B., Loh, C.H., Chao, S.H., Abrahamson, N.A., 2020a. Ground motion prediction equation for Taiwan subduction zone earthquakes. Earthquake Spectra, 36(3), 1331-1358.
Phung, V.B., Loh, C.H., Chao, S.H., Chiou, B.S., Huang, B.S., 2020b. Ground motion prediction equation for crustal earthquakes in Taiwan. Earthquake Spectra, 36(4), 2129-2164.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Team, R.C., 2020. Nlme: linear and nonlinear mixed effects models. R package version 3.1-149.
Restrepo-Velez, L.F., Bommer, J.J., 2003. An exploration of the nature of the scatter in ground-motion prediction equations and the implications for seismic hazard assessment. Journal of Earthquake Engineering, 7(spec01), 171-199.
Rodriguez-Marek, A., Cotton, F., Abrahamson, N.A., Akkar, S., Al Atik, L., Edwards, B., Montalva G.A., Dawood, H.M., 2013. A model for single-station standard deviation using data from various tectonic regions. Bulletin of the Seismological Society of America, 103(6), 3149-3163. https://doi.org/10.1785/0120130030.
Rodriguez-Marek, A., Montalva, G.A., Cotton, F., Bonilla, F., 2011. Analysis of single-station standard deviation using the KiK-net data. Bulletin of the Seismological Society of America, 101(3), 1242-1258. https://doi.org/10.1785/0120100252.
Rodriguez-Marek, A., Rathje, E.M., Bommer, J.J., Scherbaum, F., Stafford, P.J., 2014. Application of single-station sigma and site-response characterization in a probabilistic seismic-hazard analysis for a new nuclear site. Bulletin of the Seismological Society of America, 104(4), 1601-1619. https://doi.org/10.1785/0120130196.
Sadigh, K., Chang, C.Y., Abrahamson, N.A., Chiou, S.J., Power M.S., 1993. Specification of long-period ground motions: updated attenuation relationships for rock site conditions and adjustment factors for near-fault effects, in Proc. ATC-17-1 Seminar on Seismic Isolation, Passive Energy Dissipation, and Active Control, March 11-12, San Francisco, California, 59-70.
Sadigh, K., Chang, C.Y., Egan, J.A., Makdisi, F., Youngs, R.R., 1997. Attenuation relationships for shallow crustal earthquakes based on California strong motion data. Seismological Research Letters, 68(1), 180-189.
Sedaghati, F., Pezeshk, S., 2017. Partially nonergodic empirical ground‐motion models for predicting horizontal and vertical PGV, PGA, and 5% damped linear acceleration response spectra using data from the Iranian plateau. Bulletin of the Seismological Society of America, 107(2), 934-948.
Seed, H.B., Ugas, C., Lysmer, J., 1976. Site-dependent spectra for earthquake-resistant design. Bulletin of the Seismological society of America, 66(1), 221-243.
Shin, T.C., Chang, C.H., Pu, H.C., Lin, H.W., Leu, P.L., 2013. The geophysical database management system in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences 24(1), 11-18. https://doi.org/10.3319/TAO.2012.09.20.01(T).
Shyu, J.B.H., Chuang, Y.R., Chen, Y.L., Lee, Y.R., Cheng, C.T., 2016. A new on-land seismogenic structure source database from the Taiwan Earthquake Model (TEM) project for seismic hazard analysis of Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 27(3), 311-323.
Stafford, P.J., 2014. Crossed and nested mixed‐effects approaches for enhanced model development and removal of the ergodic assumption in empirical ground‐motion models. Bulletin of the Seismological Society of America, 104(2), 702-719.
Strasser, F.O., Abrahamson N.A., Bommer, J.J., 2009. Sigma: issues, insights, and challenges. Seismological Research Letters, 80(1), 40-56. https://doi.org/10.1785/gssrl.80.1.40.
Sung, C.H., Lee, C.T., 2009. Single site strong-motion attenuation relationship. Proceeding of the Next Generation of Research on Earthquake-induced Landslides - an International Conference in Commemoration of 10th Anniversary of the Chi-Chi Earthquake, Jhongli, Taiwan, 284-292.
Sung, C.H., Lee, C.T., 2016. A new methodology for quantification of the systematic path effects on ground‐motion variability. Bulletin of the Seismological Society of America, 106(6), 2796-2810. https://doi.org/10.1785/0120160038.
Sung, C.H., Lee, C.T., 2019. Improvement of the quantification of epistemic uncertainty using single‐station ground‐motion prediction equations. Bulletin of the Seismological Society of America, 109(4), 1358-1377.
Tsai, C.C.P., Chen, Y.H., Liu, C.H., 2006. The path effect in ground-motion variability: an application of the variance-components technique. Bulletin of the Seismological Society of America, 96(3), 1170-1176.
Tselentis, G.A., Danciu, L., 2008. Empirical relationships between modified Mercalli intensity and engineering ground-motion parameters in Greece. Bulletin of the Seismological Society of America, 98(4), 1863-1875.
Villani, M., Abrahamson, N.A., 2015. Repeatable site and path effects on the ground‐motion sigma based on empirical data from southern California and simulated waveforms from the CyberShake platform. Bulletin of the Seismological Society of America, 105(5), 2681-2695.
Wang, Y.J., Chan, C.H., Lee, Y.T., Ma, K.F., Shyu, J.B.H., Rau, R.J., Cheng, C.T., 2016. Probabilistic seismic hazard assessment for Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 27(3), 325-340.
Wang, Y.J., Ma, K.F., Mouthereau, F., Eberhart-Phillips, D., 2010. Three-dimensional Qp-and Qs-tomography beneath Taiwan orogenic belt: implications for tectonic and thermal structure. Geophysical Journal International, 180(2), 891-910.
Wells, D. L., Coppersmith, K. J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974-1002.
Wu, Y.M., Zhao, L., Chang, C.H., Hsu, Y.J., 2008. Focal-mechanism determination in Taiwan by genetic algorithm. Bulletin of the Seismological Society of America, 98(2), 651-661. https://doi.org/10.1785/0120070115.
Youngs, R.R., Coppersmith, K.J., 1985. Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates. Bulletin of the Seismological Society of America, 75(4), 939-964.
李錫堤、馬國鳳、秦葆珩,1999,美濃水庫設計地震評估成果報告,台灣省政府水利處,共320頁。
高嘉謙,2015。單站地動預估式建立及場址特定地震危害度分析,國立中央大學碩士論文,共127頁。
經濟部水利署南區水資源局,2015。牡丹水庫第三次定期安全評估報告,共912頁。
臺灣嘉南農田水利會,2018。烏山頭水庫第五次定期安全評估報告,共800頁。
蔡義本、王乾盈、李錫堤、許茂雄、劉坤松,1998。台灣區學校附近活斷層普查及防震對策研究計畫,台灣省政府教育廳研究報告,共274頁。
鄭世楠,2010。臺灣地區地震目錄的建置(II),中央氣象局地震技術報告彙編,第64卷,483-501。
鄭錦桐,2002。台灣地區 PSHA 的不確定分析與參數拆解,中央大學地球物理研究所博士論文,共243頁。
指導教授 李錫堤 馬國鳳(Chyi-Tyi Lee Kuo-Fong Ma) 審核日期 2022-2-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明