博碩士論文 108326603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.117.142.70
姓名 范青竹(Thanh-Truc Pham)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 商用 V2O5-WO3/TiO2觸媒對六氯苯破壞之研究
(Destruction of Hexachlorobenzene over Commercial V2O5-WO3/TiO2 Catalyst)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 六氯苯(HeCB)是持久性有機污染物(POPs)之一,儘管全球在幾十年前已限制HeCB的產生,其仍存留於環境中,然而現今關於去除HeCB的研究很少。為了分析過程中產生的中間產物,改進分析氯苯同系物的方法,目前已成功分析氯苯同系物(三氯至六氯)。本研究中探討商業用觸媒 V2O5-WO3/TiO2 對六氯苯的去除效率,當反應溫度為160oC~200oC時,乾燥條件下200℃時HeCB去除效率可達99%,在此溫度範圍內,存在水蒸氣 (20%) 時,200oC 下最高去除效率達 94%,因此高溫可以提高觸媒活性,在較高溫度,乾燥條件及濕潤條件下去除效率從 160oC 的 8% 下降到 200oC 的 5%,代表可以克服蒸氣含量對觸媒的不利影響。但水蒸氣仍被認為是抑制 V2O5-WO3/TiO2 觸媒性能的因素。根據初步結果,1,2,4-TriCB 是在觸媒破壞過程中產生的主要含氯化合物,幾乎可全部被吸附在觸媒上,在乾燥條件及濕潤條件下,氣流和觸媒中1,2,4-TriCB 的最高總質量分別為 0.7 µg 和 0.8 µg。透過計算氯質量平衡,發現在沒有水蒸氣的情況下有35% 的氯原子不存在於含氯化合物中,若通入氣流含有水蒸氣則該值為 20%。因此,蒸氣會影響觸媒將含氯化合物破壞為 Cl2 的能力。對於HeCB而言,溫度與觸媒吸附能力呈正相關。目前該領域的研究文獻並不多,需進行更多的實驗數據來證實。
摘要(英) Hexachlorobenzene (HeCB) is one of the notorious persistent organic pollutants (POPs). Even though its production was restricted worldwide decades ago, HeCB still remains in the environment. However, there is a scarcity of studies conducted on HeCB removal. To assist in analyzing intermediates produced in the destruction process, a method of analyzing chlorobenzene congeners has been improved. Up to now, the procedure has been successful in the analysis of chlorobenzene congeners (from tri- to hexa-). In this research, the catalytic performance of commercial V2O5-WO3/TiO2 in HeCB destruction has been studied. When the reactor temperature ranges from 160oC to 200oC, the peak of HeCB removal efficiency could be up to 99% at 200oC in the dry condition. With water vapor (20%) and in this temperature range, the highest removal efficiency was 94% at 200oC. Therefore, high temperatures can enhance catalytic activity. At higher temperatures, the gap between removal efficiencies in dry and wet conditions declines from 8% at 160oC to 5% at 200oC, which means the adverse effect of steam content on the catalyst can also be overcome. However, water vapor is still considered the factor that inhibits the catalytic performance of V2O5-WO3/TiO2. Based on the preliminary results. 1,2,4-TriCB predominates in the chlorinated by-products during catalytic destruction, and it could be almost adsorbed on the catalyst. The highest total mass of 1,2,4-TriCB in the effluent and on the catalyst was 0.7 µg and 0.8 µg in dry and wet conditions, respectively. By calculating chorine mass balance, 35% of chlorine atoms do not present in the chlorinated compounds in the absence of water vapor. In comparsison, that value was 20% if the inlet gas stream contained water vapor. Therefore, steam can also impact the ability of the catalyst to destroy chlorinated compounds to Cl2. In terms of HeCB, there was a positive correlation between temperature and the catalytic adsorption capacity. There are currently not many scientific publications in this field, and more experiments are needed.
關鍵字(中) ★ V2O5-WO3/TiO2
★ 氧化
★ 六氯苯
★ CBz 同系物
關鍵字(英) ★ V2O5-WO3/TiO2
★ destruction
★ hexachlorobenzene
★ CBz congeners
論文目次 TABLE OF CONTENTS
ABSTRACT ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES vii
ACRONYMS AND ABBREVIATIONS viii

Chapter I INTRODUCTION 1
1-1 The research rationale 1
1-2 Research objectives 3
Chapter II LITERATURE REVIEW 4
2-1 Introduction of Hexachlorobenzene 4
2-1-1 Background information 4
2-1-2 Identification 4
2-2 Sources 4
2-3 Levels monitored or estimated in the environment 6
2-4 Environmental fate in the atmosphere 7
2-4-1 Transportation and Partitioning 7
2-4-2 Degradation 7
2-5 Toxicity 8
2-6 Human exposure pathways 9
2-7 Dechlorination mechanism 9
2-7-1 The mechanochemical dechlorination 10
2-7-2 The photochemical dechlorination 11
2-8 Thermal decomposition and destruction mechanism 11
2-9 Treatment method of hexachlorobenzene 13
2-10 Introduction of VOx-based catalysts 16
Chapter III EXPERIMENTAL METHOD 19
3-1 Materials and equipment 19
3-2 Stability test of the gas stream 21
3-3 Catalytic activity test 22
3-4 Analytical procedures 24
3-4-1 Extraction stage 25
3-4-2 Cleanup stage 25
3-5 The results calculation 26
3-5-1 The calculation for the analytical procedure 26
3-5-2 The calculation of the catalytic activity 29
Chapter IV RESULTS AND DISCUSSION 31
4-1 Development of the analytical method 31
4-2 Stability test of the gas stream 35
4-2-1 Different initial concentrations of influents 35
4-2-2 Different temperatures at injection point 36
4-3 Preliminary results for the catalytic removal of V2O5-WO3/TiO2 37
4-3-1 The chlorine mass balance 40
4-3-2 Dry condition 41
4-3-3 Wet condition 42
4-3-4 The effect of water vapor 44
4-3-5 The effect of gas hourly space velocity 44
4-4 Potential in the practical application 45
Chapter V CONCLUSIONS AND SUGGESTIONS 46
BIBLIOGRAPHY 48
APPENDICES 58
參考文獻 [1] Wania, F., Axelman, J., and Broman, D. (1998). "A review of processes involved in the exchange of persistent organic pollutants across the air–sea interface". Environmental Pollution, 102 (1): 3-23.
[2] Beyer, A., Mackay, D., Matthies, M., Wania, F., and Webster, E. (2000). "Assessing long-range transport potential of persistent organic pollutants". Environmental Science & Technology, 34.
[3] Dachs, J., Bayona, J. M., Fowler, S. W., Miquel, J. C., and Albaigés, J. (1996). "Vertical fluxes of polycyclic aromatic hydrocarbons and organochlorine compounds in the western Alboran Sea (southwestern Mediterranean)". Marine Chemistry, 52 (1): 75-86.
[4] García-Flor, N., Guitart, C., Ábalos, M., Dachs, J., Bayona, J. M., and Albaigés, J. (2005). "Enrichment of organochlorine contaminants in the sea surface microlayer: An organic carbon-driven process". Marine Chemistry, 96 (3): 331-345.
[5] Gramatica, P. and Papa, E. (2007). "Screening and ranking of POPs for global half-life: QSAR approaches for prioritization based on molecular structure". Environmental Science & Technology, 41: 2833-2839.
[6] Yang, Y., Yu, G., Deng, S., Wang, S., Xu, Z., Huang, J., and Wang, B. (2012). "Catalytic oxidation of hexachlorobenzene in simulated gas on V2O5-WO3/TiO2 catalyst". Chemical Engineering Journal, 192: 284-291.
[7] Fang, M. D., Baker, J., and Lee, C. L. (2009). "Seasonality of diffusive exchange of polychlorinated biphenyls and hexachlorobenzene across the air-sea interface of Kaohsiung Harbor, Taiwan". Science of the Total Environment, 407: 548-565.
[8] Alloway, B. J. and Ayres, D. C. (1993). Chemical principles of environmental pollution, Published: Chapman & Hall, London.
[9] Oehme, M., Mano, S., and Mikalsen, A. (1987). "Formation and presence of polyhalogenated and polycyclic compounds in the emissions of small and large scale municipal waste". Chemosphere, 16: 143-153.
[10] Oppelt, E. T. (1987). "Incineration of hazardous waste. A critical review". Japca, 37 (5): 558-86.
[11] Du, C., Lu, S., Wang, Q., Buekens, A. G., Ni, M., and Debecker, D. P. (2018). "A review on catalytic oxidation of chloroaromatics from flue gas". Chemical Engineering Journal, 334: 519-544.
[12] Ma, X., Sun, H., He, H., and Zheng, M. (2007). "Competitive reaction during decomposition of Hexachlorobenzene over ultrafine Ca–Fe composite oxide catalyst". Catalysis Letters, 119 (1): 142-147.
[13] Stach, J., Pekarek, V., Endrst, R., and Hetflejs, J. (1999). "Dechlorination of hexachlorobenzene on MWI fly ash". Chemosphere, 39: 2391-2399.
[14] Weber, R., Nagai, K., Nishino, J., Shiraishi, H., Ishida, M., Takasuga, T., and Hiraoka, M. (2002). "Effects of selected metal oxides on the dechlorination and destruction of PCDDs and PCDFs". Chemosphere, 46: 1247-1253.
[15] Krishnamoorthy, S., Rivas, J. A., and Amiridi, M. D. (2000). "Catalytic oxidation of 1,2-dichlorobenzene over supported transition metal oxides". Journal of Catalysis, 193: 264-272.
[16] Liu, Y., Luo, M. F., Wei, Z. B., Xin, Q., Ying, P. L., and C., L. (2001). "Catalytic oxidation of chlorobenzene on supported manganese oxide catalysts". Applied Catalysis B: Environmental, 29.
[17] Lichtenberger, J. and Amiridis, M. D. (2004). "Catalytic oxidation of chlorinated benzenes over V2O5 /TiO2 catalysts". Journal of Catalysis, 223: 296-308.
[18] Hou, X., Ren, J., Li, F., Ma, C., Zhang, X., and Feng, H., "Research progress of perovskite materials as catalysts", in IOP Conference Series: Earth and Environmental Science Conference: IOP Publishing, 2019.
[19] Liljelind, P., Söderström, G., Hedman, B., Karlsson, S., Lundin, L., and Marklund, S. (2003). "Method for multiresidue determination of halogenated aromatics and PAHs in combustion-related samples". Environmental Science & Technology, 37 (16): 3680-3686.
[20] Haynes, W. M. (2016). CRC Handbook of Chemistry and Physics, 97th Edition, Published: CRC Press LLC Taylor & Francis Group, Boca Raton; Florence.
[21] Wang, Y. F., Zhang, Z. M., and Hu, X. M. (2006). "The research progress on the treatment for chlorobenzene in the wastewater". Industry Safety and Environmental Protection, 32 (3): 37-40.
[22] Yu, G., Niu, J. F., and Huang, J. (2005). Persistent organic pollutants: The new global environmental problem, in Beijing: Science Press, pp. 91-105.
[23] National Center for Biotechnology Information (2021). PubChem
Compound Summary for CID 8370, Hexachlorobenzene (NCBI). https://pubchem.ncbi.nlm.nih.gov/compound/Hexachlorobenzene.
[24] Mumma, C. F. and Lawless, E. W. (1975). Survey of industrial processing data. Task I-hexachlorobenzene and hexachlorobutadiene pollution for chlorocarbon processes (EPA 56013-75-004), Published, Washington DC, USA.
[25] United States Environmental Protection Agency (2001). Organic chemicals, plastics, and synthetic fibers, 40 CFR 414 (US EPA). https://www.epa.gov/
[26] Agency for Toxic Substances and Disease Registry (2002). Toxicological profile for HCB. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry (ATSDR). https://www.atsdr.cdc.gov/
[27] Dewailly, E., Mulvad, G., Pedersen, H., Ayotte, P., Demers, A., Weber, J.-P., and Hansen, J. (1999). "Concentration of organochlorines in human brain, liver, and adipose tissue autopsy samples from Greenland". Environmental Health Perspectives, 107: 823-828.
[28] Barber, J., Sweetman, A., Wijk, D., and Jones, K. (2005). "Hexachlorobenzene in the global environment: Emissions, levels, distribution, trends and processes". The Science of the total environment, 349: 1-44.
[29] Bailey, R. E. (2001). "Global hexachlorobenzene emissions". Chemosphere, 43 (2): 167-82.
[30] Brooks, G. W. and Hunt, G. E. (1984). "Source assessment for hexachlorobenzene. Research Triangle Park, North Carolina, Radian Corporation (Prepared for the US Environmental Protection Agency, Research Triangle Park, EPA 68-02-3318)".
[31] Eiceman, G. A., Clement, R. E., and Karasek, F. W. (1981). "Variations in concentrations of organic compounds including polychlorinated dibenzo-p-dioxins and polynuclear aromatic hydrocarbons in fly ash from a municipal incinerator". Analytical Chemistry, 53: 955-959.
[32] Öberg, T. and Bergström, J. (1985). "Hexachlorobenzene as an indicator of dioxin production from combustion". Chemosphere, 14: 1081-1086.
[33] Tiernan, T. O., Taylor, M. L., Garrett, J. H., VanNess, G. F., Solch, J. G., Wagel, D. J., and Schecter, A. (1985). "Sources and fate of polychlorinated dibenzodioxins, dibenzofurans and related compounds in human environments". Environmental Health Perspectives, 59: 145-158.
[34] Lane, D. A., Schroeder, W. H., and Johnson, N. D. (1992a). "Gas- and particle-phase concentrations of alpha-hexachlorocyclohexane, gamma-hexachlorocyclohexane, and hexachlorobenzene in Ontario air". Environmental Science & Technology, 26: 126-133.
[35] Ballschmiter, K. and Wittlinger, R. (1991). "Interhemisphere exchange of hexachlorocyclohexanes, hexachlorobenzene, polychlorobiphenyls, and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane in the lower troposphere". Environmental Science & Technology, 25 (6): 1103-1111.
[36] Howard, P. H. (1991). Hexachlorobenzene. In: Handbook of environmental fate and exposure for organic chemicals,Vol. 1. Published: Lewis Publishers Inc., Chelsea, Michigan.
[37] Atlas, E. and Giam, C. S. (1989). "Sea–air exchange of high molecular weight synthetic organic compounds: Results from the SEAREX Program". Chemical Oceanography: 340-378.
[38] Cortes, D. R., Basu, I., Sweet, C. W., Brice, K. A., Hoff, R. M., and Hites, R. A. (1998). "Temporal trends in gas-phase concentrations of chlorinated pesticides measured at the shores of the Great Lakes". Environmental Science & Technology, 32 (13): 1920-1927.
[39] Kaupp, H., Dörr, G., Hippelein, M., McLachlan, M. S., and Hutzinger, O. (1996). "Baseline contamination assessment for a new resource recovery facility in Germany Part IV: Atmospheric concentrations of polychlorinated biphenyls and hexachlorobenzene". Chemosphere, 32 (10): 2029-2042.
[40] Murayama, H., Takase, Y., Mitobe, H., Mukai, H., Ohzeki, T., Shimizu, K., and Kitayama, Y. (2003). "Seasonal change of persistent organic pollutant concentrations in air at Niigata area, Japan". Chemosphere, 52: 683-694.
[41] Mill, T. and Haag, W. (1986). "The environmental fate of hexachlorobenzene". TIn: Morris CR, Cabral JRP, editors. Hexachlorobenzene: Proceedings of an international symposium, 77. IARC Sci Publ.: 61-66.
[42] Brubaker, W. and Hites, R. (1998). "OH reaction kinetics of gas-phase α- and γ-hexachlorocyclohexane and hexachlorobenzene". Environmental Science & Technology, 32: 766-769.
[43] Falck, F., Jr., Ricci, A., Jr., Wolff, M. S., Godbold, J., and Deckers, P. (1992). "Pesticides and polychlorinated biphenyl residues in human breast lipids and their relation to breast cancer". Archives of Environmental Health, 47 (2): 143-146.
[44] Güttes, S., Failing, K., Neumann, K., Kleinstein, J., Georgii, S., and Brunn, H. (1998). "Chlororganic pesticides and polychlorinated biphenyls in breast tissue of women with benign and malignant breast disease". Archives of Environmental Contamination and Toxicology, 35 (1): 140-147.
[45] United Nations Environment Programme (2002). Central and North East Asia regional report, Regionally Based Assessment of Persistent Toxic Substances, Global Environment Facility (UNEP). https://iwlearn.net/
[46] Cripps, D. J., Peters, H. A., Gocmen, A., and Dogramici, I. (1984). "Porphyria turcica due to hexachlorobenzene: a 20 to 30 year follow-up study on 204 patients". The British Journal of Dermatology, 111 (4): 413-22.
[47] Peters, H., Cripps, D., and Gocmen, A. (1987). "Turkish epidemic hexachlorobenzene porphyria: A 30-year study". Annals of the New York Academy of Sciences, 514: 183-190.
[48] Courtney, K. D. (1979). "Hexachlorobenzene (HCB): A review". Environmental Research, 20 (2): 225-266.
[49] Agency for Toxic Substances and Disease Registry (1997). Toxicological profile for HCB. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry (ATSDR). http:/www.atsdr.cdc.gov
[50] Deng, S., Kang, S., Nannan, F., Zhu, J., Yu, B., Xie, X., and Chen, J. (2017). "Mechanochemical mechanism of rapid dechlorination of hexachlorobenzene". Journal of Hazardous Materials, 333: 116-127.
[51] Mejdoub, N., Souizi, A., and Delfosse, L. (1998). "Experimental and numerical study of the thermal destruction of hexachlorobenzene". Journal of Analytical and Applied Pyrolysis, 47: 77-94.
[52] Ahling, B., Lindskog, A., Jansson, B., and Sundström, G. (1977). "Formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during combustion of a 2,4,5-T formulation". Chemosphere, 6 (8): 461-468.
[53] Kaštánek, F. and Kaštánek, P. (2005). "Combined decontamination processes for wastes containing PCBs". Journal of Hazardous Materials, 117 (2): 185-205.
[54] Li, Y., Liu, Q., Li, W., Lu, Y., Meng, H., and Li, C. (2017). "Efficient destruction of hexachlorobenzene by calcium carbide through mechanochemical reaction in a planetary ball mill". Chemosphere, 166.
[55] Cocco, G., Doppiu, S., Monagheddu, M., Cao, G., Orru′, R., and Sannia, M. (1999). "Self-propagating high-temperature reduction of toxic chlorinated aromatics". International Journal of Self-Propagating High-Temperature Synthesis, 8: 521-526.
[56] Kumar, M., Kumar, D., Kubendran, D., and Kalaichelvan, P. (2013). "Hexachlorobenzene-sources, remediation and future prospects". International Journal of Current Research and Review, 05: 01-12.
[57] Larrubia, M. A. and Busca, G. (2002). "An FT-IR study of the conversion of 2-chloropropane, o-dichlorobenzene and dibenzofuran on V2O5-MoO3-TiO2 SCR-DeNOx catalysts". Applied Catalysis B: Environmental 39 (4): 343-352.
[58] Su, G., Liu, Y., Huang, L., Shi, Y., Zhang, A., Zhang, L., and Zheng, M. (2013). "Synergetic effect of alkaline earth metal oxides and iron oxides on the degradation of hexachlorobenzene and its degradation pathway". Chemosphere, 90 (1): 103-111.
[59] Kompio, P. G. W. A., Brückner, A., Hipler, F., Auer, G., Löffler, E., and Grünert, W. (2012). "A new view on the relations between tungsten and vanadium in V2O5-WO3/TiO2 catalysts for the selective reduction of NO with NH3". Journal of Catalysis, 286: 237-247.
[60] Artiglia, L., Agnoli, S., and Granozzi, G. (2015). "Vanadium oxide nanostructures on another oxide: The viewpoint from model catalysts studies". Coordination Chemistry Reviews, 301: 106-122.
[61] Feng, Z., Cheng, L., Kim, C.-Y., Elam, J., Zhang, Z., Curtiss, L., and Bedzyk, M. (2012). "Atomic-scale study of ambient-pressure redox-induced changes for an oxide-supported submonolayer catalyst: VOx/α-TiO2 (110)". Journal of Physical Chemistry Letters, 3 (19): 2845-2850.
[62] Bertinchamps, F., Grégoire, C., and Gaigneaux, E. M. (2006). "Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of (chloro)-aromatics: Part II: Influence of the nature and addition protocol of secondary phases to VOx/TiO2". Applied Catalysis B: Environmental, 66 (1): 10-22.
[63] Albonetti, S., Blasioli, S., Bonelli, R., Joseph, E., Scirè, S., and Trifirò, F. (2008). "The role of acidity in the decomposition of 1,2-dichlorobenzene over TiO2-based V2O5/WO3 catalysts". Applied Catalysis A: General, 341: 18-25.
[64] Bertinchamps, F., Attianese, A., Mestdagh, M. M., and Gaigneaux, E. M. (2006). "Catalysts for chlorinated VOCs abatement: Multiple effects of water on the activity of VOx based catalysts for the combustion of chlorobenzene". Catalysis Today, 112: 165-168.
[65] Huang, T. J. and Wang, C. H. (2007). "Roles of surface and bulk lattice oxygen in forming CO2 and CO during methane reaction over gadolinia-doped ceria". 118: 103-108.
[66] Hsu, Y.-C., Chang, S.-H., and Chang, M. B. (2021). "Emissions of PAHs, PCDD/Fs, dl-PCBs, chlorophenols and chlorobenzenes from municipal waste incinerator cofiring industrial waste". Chemosphere, 280: 130-145.
[67] Wang, T., Chen, T., Lin, X., Zhan, M., and Li, X. (2017). "Emission and distribution of PCDD/Fs, chlorobenzenes, chlorophenols, and PAHs from stack gas of a fluidized bed and a stoker waste incinerator in China". Environmental Science and Pollution Research, 24 (6): 5607-5618.
[68] Chen, Y. W., Wu, C. P., Peng, J. H., and Weng, Y. M. (2007). "Soxtherm with CAPE coupled carbon-acid column as a method for fast analyses of PCDD/Fs and dioxin-like PCBs in environmental samples". Organohalogen Compound, 69: 473-476.
[69] Lee, T. Y., Chen, Y. W., Wu, C. P., Peng, J. H., Weng, Y. M., and Harrison, R. O. (2009). "An efficient and green cleanup system for analysis of dioxin/furans, dioxin-like-PCBs and PBDEs". Organohalogen Compound, 71: 2994-2999.
[70] Lee, W. J., Shih, S. I., Li, H. W., Lin, L. F., Yu, K. M., Lu, K., and Lin, M. (2009). "Assessment of polychlorinated dibenzo-p-dioxins and dibenzofurans contribution from different media to surrounding duck farms". Journal of Hazardous Materials, 163 (1185-1193).
[71] Raaman, N. (2006). Phytochemical techniques, Published: New India Publishing,
[72] Schoenmakers, P. J. (1986). Optimization of chromatographic selectivity: a guide to method development, Published: Elsevier,
[73] Bosque, R., Sales, J., Bosch, E., Rosés, M., García-Alvarez-Coque, M. C., and Torres-Lapasió, J. R. (2003). "A QSPR study of the p solute polarity parameter to estimate retention in HPLC". Journal of Chemical Information and Computer Sciences, 43 (4): 1240-1247.
[74] Chen, T., Sun, C., Wang, T., Zhan, M., Li, X., Lu, S., and Yan, J. (2020). "Removal of PCDD/Fs and CBzs by different air pollution control devices in MSWIs". Aerosol and Air Quality Research, 20 (10): 2260-2272.
[75] Xiong, S., Shang, F., Chen, K., Lu, S., Tang, S., Li, X., and Cen, K. (2021). "Stable and effective online monitoring and feedback control of PCDD/F during municipal waste incineration". Molecules, 26 (14): 4290.
[76] Guo, Y., Chen, T., Yang, J., Cao, X., Lu, S., and Li, X. (2014). "Study on on-line detection of dioxins based on correlation model". Chinese Journal of Environmental Engineering, 8: 3524-3529.
[77] Yang, Y., Huang, J., Wang, S., Deng, S., Wang, B., and Yu, G. (2013). "Catalytic removal of gaseous unintentional POPs on manganese oxide octahedral molecular sieves". Applied Catalysis B: Environmental, 142: 568-578.
[78] Stoll, M., Furrer, J., Seifert, H., Schaub, G., and Unruh, D. (2001). "Effects of flue gas composition on the catalytic destruction of chlorinated aromatic compounds with a V-oxide catalyst". Waste Management, 21: 457-463.
指導教授 張木彬(Moo-Been Chang) 審核日期 2022-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明