博碩士論文 108326028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.138.122.162
姓名 洪上恩(Shang-En Hung)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 聚乳酸塑膠在環境水體中的老化及重金屬吸附之探討
(Aging and Heavy Metal Adsorption of Polylactic Acid Plastic in Aquatic Environment)
相關論文
★ Advanced Wastewater Analysis: AI-Integrated Flow Injection Analysis (FIA) System for COD Online Monitoring★ 電混凝法應用於金屬表面處理廢水對於處理效率的影響
★ 化學回收廢棄聚乳酸(PLA) 及製備聚氨酯材料★ 錳改質牡蠣殼固定土壤中鎘和銅之研究
★ 職業噪音暴露對人體健康影響研究-以玻璃纖維工廠為例★ 反向電透析(RED)產電效能評估 -以濃度、流速、膜對數及流道厚度為操作參數
★ 以反向電透析(RED)系統產電並去除氨氮★ 煅燒條件對牡蠣殼抗菌能力之影響及抗菌物種- 單線態氧的檢測
★ 臺灣石門水庫及入庫河川表層水中微型塑膠時空分佈、組成與相關性調查★ Feasibility Study of Lanthanum-Modified Calcined Oyster Shells for Phosphorus Removal from Aquatic Environments
★ 氮改質煅燒牡蠣殼提升水中亞甲基藍染料 吸附和光催化降解之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-31以後開放)
摘要(中) 一次性塑膠製品所引發的環境議題受到各國廣泛的關注,進而被禁用及取代,聚乳 酸塑膠成為許多產品轉為使用的替代方案。聚乳酸塑膠在具有適當溫度及濕度的堆肥場 中,會快速地被微生物分解,但對照全球的使用量,仍需要大面積的土地作為堆肥使用。 本研究旨在探討不同水體中的聚乳酸塑膠分解及老化情形,以及其吸附重金屬之情形, 用以推論未進入回收體系的聚乳酸塑膠其對環境及生物體的危害程度。
本研究將 PLA 塑膠片置於三種老化環境(無照光 25°C、60°C及有照光 60°C),搭 配不同的暴露環境(空氣、去離子水、人工海水、人工淡水及人工淡水加腐植酸),分別 老化 5、10、15、20 及 30 天後進行物性分析,透過 PLA 分子量的下降計算其水解反應。 而後取老化 30 天後的塑膠片,進行銅及鉛的吸附實驗。
摘要(英) The environmental issues caused by single-use plastic products have received extensive attention from various countries, and have been banned and replaced. Polylactic acid plastic has become an alternative for many products to be used. PLA plastics are rapidly decomposed by microorganisms in a compost field with appropriate temperature and humidity, but compared with the global usage, a large area of land is still required for composting. The purpose of this study is to investigate the decomposition and aging of PLA plastics in different water bodies, as well as their adsorption of heavy metals, in order to infer the degree of harm to the environment and organisms of PLA plastics that do not enter the recycling system.
In this study, PLA plastic sheets were placed in three aging environments (25°C without light, 60°C, and 60°C with light), with different exposure environments (air, deionized water, artificial seawater, artificial fresh water, and artificial fresh water plus humic acid). , respectively, after 5, 10, 15, 20 and 30 days of aging, the physical properties were analyzed, and the hydrolysis reaction was calculated through the decrease of the molecular weight of PLA. Then, the plastic sheets aged for 30 days were taken to carry out the adsorption experiments of copper and lead.
關鍵字(中) ★ 聚乳酸
★ 環境水體
★ 老化
★ 重金屬吸附
關鍵字(英)
論文目次 第一章 研究緣起與目的.....1
1-1 研究緣起.....1
1-2 研究目的.....2
1-3 創新及重要性.............2
第二章 文獻回顧.3
2-1 聚乳酸塑膠介紹.........3
2-1-1 聚乳酸歷史及應用 ...............3
2-1-2 聚乳酸合成及特性 ...............5
2-1-3 聚乳酸分解機制及情形 .......8
2-2 腐植質介紹...............12
2-3 水體中重金屬污染...13
2-3-1 銅污染 .13
2-3-2 鉛污染 ..15
第三章 材料與方法...........17
3-1 研究架構...............17
3-2 實驗方法與步驟...19
3-3 實驗設備...............20
3-4 實驗材料 ..........24
3-5 分析方法 ..........25
第四章 結果與討論...........27
4-1 PLA 老化後分子量變化情形 ..............27
4-2 玻璃轉化溫度.......40
4-3 TGA.......44
4-4 FTIR......48
4-5 重金屬吸附...........50
第五章 結論與建議...........54
5-1 結論..........54
5-2 建議..........55
參考文獻56
附錄........62
參考文獻 Andrady, A.L., Microplastics in the marine environment. Marine pollution bulletin, 2011. 62(8): p. 1596-1605.
2. Hidalgo-Ruz, V., et al., Microplastics in the marine environment: a review of the methods used for identification and quantification. Environmental science & technology, 2012. 46(6): p. 3060-3075.
3. Ryan, P.G., The incidence and characteristics of plastic particles ingested by seabirds. Marine environmental research, 1987. 23(3): p. 175-206.
4. report, B.R., Global markets and technologies for bioplastics. 2021.
5. Holten, C.H., Lactic acid. Properties and chemistry of lactic acid and derivatives.
1971: Weinheim/Bergstr., W. Germany, Verlag Chemie GmbH.
6. Lowe, C.E., Preparation of high molecular weight polyhydroxyacetic ester. 1954,
Google Patents.
7. Williams, D., Biodegradation of surgical polymers. Journal of Materials Science,
1982. 17(5): p. 1233-1246.
8. Lunt, J., Large-scale production, properties and commercial applications of polylactic
acid polymers. Polymer degradation and stability, 1998. 59(1-3): p. 145-152.
9. Kulkarni, R., et al., Polylactic acid for surgical implants. Archives of surgery, 1966.
93(5): p. 839-843.
10. Li, S. and M. Vert, Biodegradation of aliphatic polyesters, in Degradable polymers.
2002, Springer. p. 71-131.
11. Drumright, R.E., P.R. Gruber, and D.E. Henton, Polylactic acid technology. Advanced
materials, 2000. 12(23): p. 1841-1846.
12. Itävaara, M., S. Karjomaa, and J.-F. Selin, Biodegradation of polylactide in aerobic
and anaerobic thermophilic conditions. Chemosphere, 2002. 46(6): p. 879-885.
13. Vink, E.T., et al., The sustainability of NatureWorksTM polylactide polymers and
IngeoTM polylactide fibers: an update of the future. Macromolecular Bioscience, 2004.
4(6): p. 551-564.
14. Vink, E.T., et al., Applications of life cycle assessment to NatureWorksTM polylactide
(PLA) production. Polymer Degradation and stability, 2003. 80(3): p. 403-419.
15. Kale, G., R. Auras, and S.P. Singh, Comparison of the degradability of poly (lactide)
packages in composting and ambient exposure conditions. Packaging Technology and
Science: An International Journal, 2007. 20(1): p. 49-70.
16. Size, L.L.M., Share & Trends Analysis Report by End-Use (Residential, Commercial),
by Product (Lamps, Luminaires), by Application (Indoor, Outdoor), by Region, and
Segment Forecasts, 2021–2028. Fortune Business Insights: Maharashtra, India, 2021.
17. Hamad, K., et al., Properties and medical applications of polylactic acid: A review.
66
Express Polymer Letters, 2015. 9(5).
18. BIOPLASTICS MARKET DEVELOPMENT UPDATE 2020. 2020.
19. 黃淑娟, PLA 再生酯粒開發與射出產品試製計畫. 2017.
20. Bajpai, P.K., I. Singh, and J. Madaan, Development and characterization of PLA-
based green composites: A review. Journal of Thermoplastic Composite Materials,
2014. 27(1): p. 52-81.
21. Ebnesajjad, S., Handbook of biopolymers and biodegradable plastics: properties,
processing and applications. 2012: William Andrew.
22. Ho, K.-L.G., et al., Degradation of polylactic acid (PLA) plastic in Costa Rican soil
and Iowa state university compost rows. Journal of environmental polymer
degradation, 1999. 7(4): p. 173-177.
23. Lim, L.-T., R. Auras, and M. Rubino, Processing technologies for poly (lactic acid).
Progress in polymer science, 2008. 33(8): p. 820-852.
24. Henton, D.E., et al., Polylactic acid technology. Natural fibers, biopolymers, and
biocomposites, 2005. 16: p. 527-577.
25. Vert, M., J. Mauduit, and S. Li, Biodegradation of PLA/GA polymers: increasing
complexity. Biomaterials, 1994. 15(15): p. 1209-1213.
26. Tsuji, H. and K. Ikarashi, In vitro hydrolysis of poly (l-lactide) crystalline residues as
extended-chain crystallites. Part I: long-term hydrolysis in phosphate-buffered
solution at 37 C. Biomaterials, 2004. 25(24): p. 5449-5455.
27. Oksman, K., M. Skrifvars, and J.-F. Selin, Natural fibres as reinforcement in
polylactic acid (PLA) composites. Composites science and technology, 2003. 63(9): p.
1317-1324.
28. Lee, J.T., et al., Mechanical properties of denim fabric reinforced poly (lactic acid).
Fibers and Polymers, 2010. 11(1): p. 60-66.
29. Hu, R. and J.-K. Lim, Fabrication and mechanical properties of completely
biodegradable hemp fiber reinforced polylactic acid composites. Journal of Composite
Materials, 2007. 41(13): p. 1655-1669.
30. Srebrenkoska, V., Obtaining and characterization of polymer eco-composites:
comparison with conventional and the possibility of reusing. 2009, Faculty og
Technology and Metallurgy, University St Cyril and Methodius ....
31. Petinakis, E., et al., Effect of matrix–particle interfacial adhesion on the mechanical
properties of poly (lactic acid)/wood-flour micro-composites. Journal of Polymers and
the Environment, 2009. 17(2): p. 83-94.
32. Plackett, D., et al., Biodegradable composites based on L-polylactide and jute fibres.
Composites science and technology, 2003. 63(9): p. 1287-1296.
33. Tao, Y., L. Yan, and R. Jie, Preparation and properties of short natural fiber
reinforced poly (lactic acid) composites. Transactions of Nonferrous Metals Society of China, 2009. 19: p. s651-s655.
34. Tokiwa, Y. and B.P. Calabia, Biodegradability and biodegradation of poly (lactide). Applied microbiology and biotechnology, 2006. 72(2): p. 244-251.
35. Tsuji, H. and S. Miyauchi, Poly (L-lactide): VI Effects of crystallinity on enzymatic hydrolysis of poly (L-lactide) without free amorphous region. Polymer degradation and stability, 2001. 71(3): p. 415-424.
36. MacDonald, R.T., S.P. McCarthy, and R.A. Gross, Enzymatic degradability of poly (lactide): effects of chain stereochemistry and material crystallinity. Macromolecules, 1996. 29(23): p. 7356-7361.
37. Nampoothiri, K.M., N.R. Nair, and R.P. John, An overview of the recent developments in polylactide (PLA) research. Bioresource technology, 2010. 101(22): p. 8493-8501.
38. Höglund, A., K. Odelius, and A.-C. Albertsson, Crucial differences in the hydrolytic degradation between industrial polylactide and laboratory-scale poly (L-lactide). ACS applied materials & interfaces, 2012. 4(5): p. 2788-2793.
39. Bergsma, J.E., et al., Late degradation tissue response to poly (L-lactide) bone plates and screws. Biomaterials, 1995. 16(1): p. 25-31.
40. Li, S. and M. Vert, Biodegradation of aliphatic polyesters, in" Degradable Polymers: Principles and Applications",(G. Scott and D. Gilead Eds.). 1995, Chapman & Hall, London.
41. Karamanlioglu, M. and G.D. Robson, The influence of biotic and abiotic factors on the rate of degradation of poly (lactic) acid (PLA) coupons buried in compost and soil. Polymer degradation and stability, 2013. 98(10): p. 2063-2071.
42. Tsuji, H. and K. Suzuyoshi, Environmental degradation of biodegradable polyesters 1. Poly (ε-caprolactone), poly [(R)-3-hydroxybutyrate], and poly (L-lactide) films in controlled static seawater. Polymer Degradation and Stability, 2002. 75(2): p. 347- 355.
43. Tsuji, H. and K. Suzuyoshi, Environmental degradation of biodegradable polyesters 2. Poly (ε-caprolactone), poly [(R)-3-hydroxybutyrate], and poly (L-lactide) films in natural dynamic seawater. Polymer degradation and stability, 2002. 75(2): p. 357-365.
44. Le Duigou, A., P. Davies, and C. Baley, Seawater ageing of flax/poly (lactic acid) biocomposites. Polymer Degradation and Stability, 2009. 94(7): p. 1151-1162.
45. Ho, K.-L.G. and A.L. Pometto III, Effects of electron-beam irradiation and ultraviolet light (365 nm) on polylactic acid plastic films. Journal of environmental polymer degradation, 1999. 7(2): p. 93-100.
46. Copinet, A., et al., Effects of ultraviolet light (315 nm), temperature and relative humidity on the degradation of polylactic acid plastic films. Chemosphere, 2004. 55(5): p. 763-773.
47. Jeon, H.J. and M.N. Kim, Biodegradation of poly (L-lactide)(PLA) exposed to UV irradiation by a mesophilic bacterium. International Biodeterioration & Biodegradation, 2013. 85: p. 289-293.
48. Pranamuda, H., Y. Tokiwa, and H. Tanaka, Polylactide degradation by an Amycolatopsis sp. Applied and environmental microbiology, 1997. 63(4): p. 1637- 1640.
49. Sangwan, P. and D.Y. Wu, New insights into polylactide biodegradation from molecular ecological techniques. Macromolecular bioscience, 2008. 8(4): p. 304-315.
50. Epstein, E., The science of composting. 2017: CRC press.
51. Kolstad, J.J., et al., Assessment of anaerobic degradation of IngeoTM polylactides
under accelerated landfill conditions. Polymer Degradation and Stability, 2012. 97(7):
p. 1131-1141.
52. Bharadwaj, K., Improvements in microbial compost technology: a special reference to
microbiology of composting. Wealth from waste. Tata Energy Research Institute, New
Delhi, 1995: p. 115-135.
53. Cooperband, L.R., Composting: art and science of organic waste conversion to a
valuable soil resource. Laboratory medicine, 2000. 31(5): p. 283-290.
54. Sedničková, M., et al., Changes of physical properties of PLA-based blends during
early stage of biodegradation in compost. International journal of biological
macromolecules, 2018. 113: p. 434-442.
55. Ohkita, T. and S.H. Lee, Thermal degradation and biodegradability of poly (lactic
acid)/corn starch biocomposites. Journal of applied polymer science, 2006. 100(4): p.
3009-3017.
56. Kamiya, M., S. Asakawa, and M. Kimura, Molecular analysis of fungal communities
of biodegradable plastics in two Japanese soils. Soil science and plant nutrition, 2007.
53(5): p. 568-574.
57. Urayama, H., T. Kanamori, and Y. Kimura, Properties and biodegradability of
polymer blends of poly (l‐lactide) s with different optical purity of the lactate units.
Macromolecular materials and engineering, 2002. 287(2): p. 116-121.
58. Calmon, A., et al., Evaluation of material biodegradability in real conditions–
development of a burial test and an analysis methodology based on numerical vision.
Journal of environmental polymer degradation, 1999. 7(3): p. 157-166.
59. Karamanlioglu, M., R. Preziosi, and G.D. Robson, Abiotic and biotic environmental
degradation of the bioplastic polymer poly (lactic acid): a review. Polymer
Degradation and stability, 2017. 137: p. 122-130.
60. Morales, J., et al., Degradation of carbofuran and carbofuran-derivatives in presence
of humic substances under basic conditions. Chemosphere, 2012. 89(11): p. 1267-
1271.
61. Moura, M.N., M.J. Martín, and F.J. Burguillo, A comparative study of the adsorption
of humic acid, fulvic acid and phenol onto Bacillus subtilis and activated sludge.
Journal of Hazardous Materials, 2007. 149(1): p. 42-48.
62. Güngör, E.B.Ö. and M. Bekbölet, Zinc release by humic and fulvic acid as influencedby pH, complexation and DOC sorption. Geoderma, 2010. 159(1-2): p. 131-138.
63. Zhao, L., et al., Adsorption of humic acid from aqueous solution onto irradiation-
crosslinked carboxymethylchitosan. Bioresource technology, 2008. 99(6): p. 1911-
1917.
64. Spark, K., J. Wells, and B. Johnson, The interaction of a humic acid with heavy
metals. Soil Research, 1997. 35(1): p. 89-102.
65. Pinheiro, J., A. Mota, and M.S. Gonçalves, Complexation study of humic acids with
cadmium (II) and lead (II). Analytica chimica acta, 1994. 284(3): p. 525-537.
66. Kinniburgh, D.G., et al., Metal ion binding by humic acid: application of the NICA-
Donnan model. Environmental Science & Technology, 1996. 30(5): p. 1687-1698.
67. Bowen, H.J., The handbook of environmental chemistry. 1, The natural environment
and the biogeochemical cycles: D. 1985: Springer.
68. Beavington, F., Contamination of soil with zinc, copper, lead, and cadmium in the
Wollongong city area. Soil Research, 1973. 11(1): p. 27-31.
69. Lopez, J.M. and G.F. Lee, Environmental chemistry of copper in Torch Lake,
Michigan. Water, Air, and Soil Pollution, 1977. 8(4): p. 373-385.
70. Forstner, U. and G.T. Wittmann, Metal pollution in the aquatic environment. 1979:
Springer-Verlag.
71. Barkay, T., S.C. Tripp, and B.H. Olson, Effect of metal-rich sewage sludge application
on the bacterial communities of grasslands. Applied and Environmental Microbiology,
1985. 49(2): p. 333-337.
72. Mackenthun, K.M. and H.L. Cooley, The biological effect of copper sulphate
treatment on lake ecology. Transactions of the Wisconsin Academy of Sciences, Arts
and Letters, 1952. 41: p. 177-187.
73. Elder, J.F. and A.J. Horne, Copper cycles and CuSO 4 algicidal capacity in two
California lakes. Environmental management, 1978. 2(1): p. 17-30.
74. Hodson, P., U. Borgman, and H. Shear, Toxicity of copper to aquatic biota. Pages
307–372in JO Nriagu (ed.), Copper in the environment. II. Health effects. 1979, John
Wiley & Sons, New York.
75. Baham, J. and G. Sposito, Proton and Metal Complexation by Water‐soluble Ligands
Extracted from Anaerobically Digested Sewage Sludge. 1986, Wiley Online Library.
76. Stiff, M., The chemical states of copper in polluted fresh water and a scheme of
analysis to differentiate them. Water Research, 1971. 5(8): p. 585-599.
77. Boutron, C.F. and C.C. Patterson, The occurrence of lead in Antarctic recent snow, firn
deposited over the last two centuries and prehistoric ice. Geochimica et
Cosmochimica Acta, 1983. 47(8): p. 1355-1368.
78. Badger, M.J.R.T.M. and S.J.S.P.K. Roberson, Endocrine mechanisms underlying the
growth effects of developmental lead exposure in the rat. Journal of Toxicology and Environmental Health Part A, 1998. 54(2): p. 101-120.
79. Gorrasi, G. and R. Pantani, Effect of PLA grades and morphologies on hydrolytic degradation at composting temperature: Assessment of structural modification and kinetic parameters. Polymer degradation and stability, 2013. 98(5): p. 1006-1014.
指導教授 林伯勳(Po-Hsun Lin) 審核日期 2022-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明