博碩士論文 108326014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.145.45.223
姓名 卓晉瑋(Jin-Wei Zhuo)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 運用TNT修飾活性碳電極對PPCPs進行電容去離子之研究
(Removal of NaCl and PPCPs by TNT modified activated carbon electrode via capacitive deionization)
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 二氧化矽與氧化鋁廢水混合混凝處理之研究
★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討★ 非接觸式光學監測混凝系統技術之發展
★ 以光學影像連續監測銅廢水化學沉降之技術發展★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝
★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例★ 石門水庫分層取水對於前加氯與混凝成效之影響
★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析★ 地表水中氨氮之生物急毒性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-5-11以後開放)
摘要(中) 電容去離子(CDI)是一種低能耗的技術,該技術有利於水的再生,可以減少處理過程中的水資源浪費,在水再生領域被視為極具有開發潛力之技術。廢污水經傳統的水處理程序之出流水包含著許多無法去除的藥物和個人保健用品(PPCPs),雖然目前水體中的濃度極低,這些藥物的存在仍可能會使碳基電極裡之奈米孔洞積垢而使去離子性能下降。故本研究使用奈米鈦管修飾活性碳(TNTAC)電極,藉由CDI技術達成去離子之目的,加上奈米鈦管之電催化效果,期望於CDI去除水中離子的同時去除藥物。
在本研究中,TNTAC電極的去離子性能優於活性碳(AC)電極,這是由於TNT的改質提高了親水性。BET孔洞分析表明TNTAC的比表面積大於AC,這導致TNTAC對乙醯胺酚(ACT)的去除效果優於AC。在 TNTAC 電極對藥物的去除方面,無論是純溶液還是混合溶液中的 ACT,都表明由於靜電力、電極的電催化作用和介導氧化作用的增加,去除率隨著電位的增加而增加。阿斯匹靈(AS)在1.2 V的電位下表現出最好的去除效果,這可能是因為在2 V以上的電位下電解產生的氣泡附著在電極上減少了AS的去除。TNTAC電極在多次吸附-脫附實驗中表現出良好的重複使用性,這表明TNTAC電極可以增加去除離子的能力,也可同時降解藥物。
摘要(英) Capacitive deionization (CDI) was a low-energy technology, which could reduce water waste during treatment and was a beneficial for water regeneration technology. It is one of the promising technology in reclaimed water. The effluent of wastewater through the traditional water treatment process contains many pharmaceuticals and personal care products (PPCPs) which cannot be removed. Although the concentration in a water body is extremely low currently, the presence of these pharmaceuticals may still cause fouling of the nanopores in the carbon electrode and decrease deionization. Therefore, this study developed the titanium nanotube modified activated carbon (TNTAC) electrode to reduce the ion concentration in water through CDI technology. In addition, the electro-catalytic effect of the titanium nanotube could reduce the fouling of pharmaceuticals while removing ions by CDI. In this study, the deionization ability of TNTAC electrode was better than activated carbon (AC) electrode, which was due to the increased hydrophilicity by TNT modification. The BET analysis showed that the specific surface area of TNTAC was larger than AC, so that TNTAC had better acetaminophen (ACT) removal than AC. In terms of the removal of pharmaceuticals by TNTAC electrodes, the removal increased with increasing potential for both ACT and ACT/NaCl solution or in mixture solution, which might be due to increasing electrostatic, electrocatalysis by the electrode, and mediated oxidation. The removal of aspirin (AS) showed the best removal occurred at potential of 1.2 V. At 2 V, electrolysis of water might generate bubbles, which might attach to the electrode and decreased removal of AS. TNTAC electrode showed good reusability in multiple adsorption-desorption experiments which suggest that the composite of TNT can increase the ability to remove ions and also degrade PPCPs at the same time.
關鍵字(中) ★ 電容去離子
★ 藥物及個人保健用品
★ 乙醯胺酚
★ 阿斯匹靈
★ 奈米鈦管
關鍵字(英) ★ capacitive deionization
★ titanium nanotube
★ pharmaceuticals and personal care products
★ acetaminophen
★ aspirin
論文目次 Content
Abstract i
摘要 iii
誌謝 v
Content vii
List of Figures x
List of table xiii
Chapter 1 Introduction 1
1.1 Background 1
1.2. Objectives 3
Chapter 2 Literature Reviews 5
2.1 Capacitive deionization 5
2.2.1 Theory of electrical double layer 6
2.1.2 Batch-mode system 8
2.1.3 Affecting factors in CDI system 10
2.2.4 The effect of organic matter in CDI system 11
2.2 Electrode in CDI 13
2.2.1 Activity carbon electrode (AC) 13
2.2.2 Titanium dioxide (TiO2) 14
2.3.3 Titanate nanotube (TNT) 14
2.3 Pharmaceuticals personal care products (PPCPs) 15
2.3.1 Basic characteristics 15
2.3.2 Technologies for PPCPs removal 18
Chapter 3 Materials and Methods 21
3.1 Preparation of titanate nanotube modified activity carbon (TNTAC) 21
3.1.1 Pretreatment of activated carbon 21
3.1.2 Preparation of titanate nanotube/activated carbon (TNTAC) composite material 21
3.2 Characterization of TNTAC 23
3.3 Fabrication of electrodes of CDI 25
3.4 Removal of ACT, AS and NaCl via CDI 27
3.5 Analysis of NaCl and pharmaceuticals 29
3.6 Data analysis 33
3.6.1 Adsorption amount/removal amount 33
3.6.2 Adsorption kinetic model 33
Chapter 4 Result and Discussions 35
4.1 Characterization of materials 35
4.1.1 Morphological characterization of TNTAC 35
4.1.2 XRD analysis 37
4.1.3 Specific surface area and pore size distribution analysis 38
4.1.4 Surface functional group of materials 41
4.1.5 Electrochemical properties of AC and TNTAC electrodes 43
4.2 Deionization of NaCl by TNTAC 47
4.2.1. Comparison of TNTAC and AC electrodes in CDI 47
4.2.2 Effects of applied potential on the removal NaCl by TNTAC electrode 48
4.3 Removal of ACT by CDI 50
4.3.1 Effects of potential on removal ACT in CDI by TNTAC electrode 50
4.3.2 Removal of NaCl and ACT by TNTAC electrode in CDI 54
4.3.3 Removal of ACT &NaCl by AC and TNTAC electrode 62
4.3.4 Kinetics of ACT electrosorption 64
4.4 Removal of AS by CDI 67
4.4.1 Effects of potential on removal of AS by TNTAC electrode 67
4.4.2 Removal of NaCl and AS by TNTAC electrode in CDI 70
4.4.3 Removal of AS &NaCl by AC and TNTAC electrode 79
4.4.4 Kinetics of AS electrosorption 82
4.5 Characterization of used electrodes 84
4.5.1 After adsorption-desorption in mixture of NaCl and ACT 84
4.5.2 After adsorption-desorption in mixture of NaCl and AS 85
4.6 Regeneration of electrode 87
Chapter 5 Conclusion and Suggestion 92
5.1 Conclusion 92
5.2 Suggestion 93
APPENDIX 94
References 101
參考文獻 Abdullah, M., Kamarudin, S., and Shyuan, L.J.N.r.l.,"TiO2 nanotube-carbon (TNT-C) as support for Pt-based catalyst for high methanol oxidation reaction in direct methanol fuel cell", Nanoscale research letters, 11, 1-18(2016).
Abdullah, M., Kamarudin, S.K.J.R., and Reviews, S.E.,"Titanium dioxide nanotubes (TNT) in energy and environmental applications: An overview", Renewable and Sustainable Energy Reviews, 76, 212-225(2017).
Alencherry, T., Naveen, A., Ghosh, S., Daniel, J., and Venkataraghavan, R.J.D.,"Effect of increasing electrical conductivity and hydrophilicity on the electrosorption capacity of activated carbon electrodes for capacitive deionization", Desalination, 415, 14-19(2017).
Alimirzaeva, Z., Isaev, A., Shabanov, N., Magomedova, A., Kadiev, M., and Kaviyarasu, K.J.M.T.P.,"Photoelectrocatalytic activity PbO2 loaded highly oriented TiO2 nanotubes arrays", Materials Today: Proceedings, 36, 325-327(2021).
Azman, A., Ngadi, N., Khairunnisa, D., Zaini, A., Jusoh, M., and Arsad, A.J.C.E.,"Effect of adsorption parameter on the removal of aspirin using tyre waste adsorbent", CHEMICAL ENGINEERING, 72, (2019).
Bavykin, D.V., Parmon, V.N., Lapkin, A.A., and Walsh, F.C.,"The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes", Journal of Materials Chemistry, 14, 3370-3377(2004).
Behera, S.K., Kim, H.W., Oh, J.-E., and Park, H.-S.J.S.o.t.t.e.,"Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea", Science of the total environment, 409, 4351-4360(2011).
Bockris, J., Reddy, A.J.E., Biology, and Environmental Science. 2nd ed., R.K.A.P.,"Modern Electrochemistry 2B: Electrodics in Chemistry", (2000).
Boxall, A.B., Rudd, M.A., Brooks, B.W., Caldwell, D.J., Choi, K., Hickmann, S., Innes, E., Ostapyk, K., Staveley, J.P., and Verslycke, T.J.E.h.p.,"Pharmaceuticals and personal care products in the environment: what are the big questions?", Environmental health perspectives, 120, 1221-1229(2012).
Cai, J., Zhou, M., Xu, X., and Du, X.J.J.o.h.m.,"Stable boron and cobalt co-doped TiO2 nanotubes anode for efficient degradation of organic pollutants", Journal of hazardous materials, 396, 122723(2020).
Chen, L., Ji, H., Qi, J., Huang, T., Wang, C.-C., and Liu, W.J.C.E.J.,"Degradation of acetaminophen by activated peroxymonosulfate using Co(OH)2 hollow microsphere supported titanate nanotubes: Insights into sulfate radical production pathway through CoOH+ activation", Chemical Engineering Journal, 406, 126877(2021).
Choi, H.-J., Jung, S.-M., Seo, J.-M., Chang, D.W., Dai, L., and Baek, J.-B.J.N.E.,"Graphene for energy conversion and storage in fuel cells and supercapacitors", Nano Energy, 1, 534-551(2012).
Comninellis, C., Kapalka, A., Malato, S., Parsons, S.A., Poulios, I., Mantzavinos, D.J.J.o.C.T., Biotechnology: International Research in Process, E., and Technology, C.,"Advanced oxidation processes for water treatment: advances and trends for R&D", Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 83, 769-776(2008).
Cui, Y., Meng, Q., Deng, X., Ma, Q., Zhang, H., Cheng, X., Li, X., Xie, M., Cheng, Q.J.J.o.I., and Chemistry, E.,"Fabrication of platinum nano-crystallites decorated TiO2 nano-tube array photoelectrode and its enhanced photoelectrocatlytic performance for degradation of aspirin and mechanism", Journal of Industrial and Engineering Chemistry, 43, 177-184(2016).
Dai, Q., Xia, Y., Jiang, L., Li, W., Wang, J., and Chen, J.J.I.J.E.S.,"Enhanced degradation of aspirin by electrochemical oxidation with modified PbO2 electrode and hydrogen peroxide", Int. J. Electrochem. Sci, 7, 12895-12906(2012).
Dao, K.C., Yang, C.-C., Chen, K.-F., and Tsai, Y.-P.J.W.,"Recent trends in removal pharmaceuticals and personal care products by electrochemical oxidation and combined systems", Water, 12, 1043(2020).
de Luna, M.D.G., Briones, R.M., Su, C.-C., and Lu, M.-C.J.C.,"Kinetics of acetaminophen degradation by Fenton oxidation in a fluidized-bed reactor", Chemosphere, 90, 1444-1448(2013).
Duan, F., Li, Y., Cao, H., Wang, Y., Crittenden, J.C., and Zhang, Y.J.C.,"Activated carbon electrodes: electrochemical oxidation coupled with desalination for wastewater treatment", Chemosphere, 125, 205-211(2015).
El-Deen, A.G., Choi, J.-H., Khalil, K.A., Almajid, A.A., and Barakat, N.A.J.R.A.,"A TiO2 nanofiber/activated carbon composite as a novel effective electrode material for capacitive deionization of brackish water", RSC Advances, 4, 64634-64642(2014).
Fan, C.-S., Tseng, S.-C., Li, K.-C., and Hou, C.-H.J.J.o.h.m.,"Electro-removal of arsenic (III) and arsenic (V) from aqueous solutions by capacitive deionization", Journal of hazardous materials, 312, 208-215(2016).
Feng, J., Xiong, S., Wang, Y.J.S., and Technology, P.,"Atomic layer deposition of TiO2 on carbon-nanotube membranes for enhanced capacitive deionization", Separation and Purification Technology, 213, 70-77(2019).
Figueiredo, J.L., Pereira, M., Freitas, M., and Orfao, J.J.c.,"Modification of the surface chemistry of activated carbons", carbon, 37, 1379-1389(1999).
Ganiyu, S.O., Van Hullebusch, E.D., Cretin, M., Esposito, G., Oturan, M.A.J.S., and Technology, P.,"Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: a critical review", Separation and Purification Technology, 156, 891-914(2015).
Garcia, X., Pargament, D.J.R., Conservation, and Recycling."Reusing wastewater to cope with water scarcity: Economic, social and environmental considerations for decision-making", Resources, Conservation and Recycling, 101, 154-166(2015).
Gonçalves, A.G., Órfão, J.J., and Pereira, M.F.R.J.C.E.J.,"Ozonation of erythromycin over carbon materials and ceria dispersed on carbon materials", Chemical Engineering Journal, 250, 366-376(2014).
He, D., Wong, C.E., Tang, W., Kovalsky, P., Waite, T.D.J.E.S., and Letters, T.,"Faradaic reactions in water desalination by batch-mode capacitive deionization", Environmental Science & Technology Letters, 3, 222-226(2016).
He, Y., Huang, W., Chen, R., Zhang, W., Lin, H., Li, H.J.S., and Technology, P.,"Anodic oxidation of aspirin on PbO2, BDD and porous Ti/BDD electrodes: Mechanism, kinetics and utilization rate", Separation and Purification Technology, 156, 124-131(2015).
Ho, Y.-S., and McKay, G.,"Pseudo-second order model for sorption processes", Process biochemistry, 34, 451-465(1999).
Hou, C.-H., Liu, N.-L., and Hsi, H.-C.J.C.,"Highly porous activated carbons from resource-recovered Leucaena leucocephala wood as capacitive deionization electrodes", Chemosphere, 141, 71-79(2015).
Hou, C., Huang, C., Hu, C.J.I.J.o.E.S., and Technology."Application of capacitive deionization technology to the removal of sodium chloride from aqueous solutions", International Journal of Environmental Science and Technology, 10, 753-760(2013).
Hsu, C.-C., Tu, Y.-H., Yang, Y.-H., Wang, J.-A., and Hu, C.-C.J.D.,"Improved performance and long-term stability of activated carbon doped with nitrogen for capacitive deionization", Desalination, 481, 114362(2020).
Huang, W., Zhang, Y., Bao, S., Cruz, R., and Song, S.J.D.,"Desalination by capacitive deionization process using nitric acid-modified activated carbon as the electrodes", Desalination, 340, 67-72(2014).
Huang, W., Zhang, Y., Bao, S., Song, S.J.S.R., and Letters."Desalination by capacitive deionization with carbon-based materials as electrode: a review", Desalination, 20, 1330003(2013).
Ji, H., Wang, T., Huang, T., Lai, B., and Liu, W.J.J.o.C.P.,"Adsorptive removal of ciprofloxacin with different dissociated species onto titanate nanotubes", Journal of Cleaner Production, 278, 123924(2021).
Jiang, J.-Q., and Ashekuzzaman, S.J.C.O.i.C.E.,"Development of novel inorganic adsorbent for water treatment", Current Opinion in Chemical Engineering, 1, 191-199(2012).
Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., and Niihara, K.,"Formation of titanium oxide nanotube", Langmuir, 14, 3160-3163(1998).
Katal, R., Farahani, M.H.D.A., Jiangyong, H.J.S., and Technology, P.,"Degradation of acetaminophen in a photocatalytic (batch and continuous system) and photoelectrocatalytic process by application of faceted-TiO2", Separation and Purification Technology, 230, 115859(2020).
Kim, C., Lee, J., Kim, S., and Yoon, J.J.D.,"TiO2 sol–gel spray method for carbon electrode fabrication to enhance desalination efficiency of capacitive deionization", Desalination, 342, 70-74(2014).
Kim, K.H., Kim, M.J., and Lee, Y.-S.J.D.,"Effect of CF bonds introduced by fluorination on the desalination properties of activated carbon as the cathode for capacitive deionization", Desalination, 457, 1-7(2019).
Kim, S.D., Cho, J., Kim, I.S., Vanderford, B.J., and Snyder, S.A.J.W.r.,"Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters", Water research, 41, 1013-1021(2007).
Kim, T., Yu, J., Kim, C., and Yoon, J.J.J.o.E.C.,"Hydrogen peroxide generation in flow-mode capacitive deionization", Journal of Electroanalytical Chemistry, 776, 101-104(2016).
Kimura, K., Iwase, T., Kita, S., and Watanabe, Y.J.W.r.,"Influence of residual organic macromolecules produced in biological wastewater treatment processes on removal of pharmaceuticals by NF/RO membranes", Water research, 43, 3751-3758(2009).
Kumar, S.A., Tang, C.-F., and Chen, S.-M.J.T.,"Electroanalytical determination of acetaminophen using nano-TiO2/polymer coated electrode in the presence of dopamine", Talanta, 76, 997-1005(2008).
Laxman, K., Myint, M.T.Z., Al Abri, M., Sathe, P., Dobretsov, S., and Dutta, J.J.D.,"Desalination and disinfection of inland brackish ground water in a capacitive deionization cell using nanoporous activated carbon cloth electrodes", Desalination, 362, 126-132(2015).
Lee, C.H., Rhee, S.W., and Choi, H.W.J.N.r.l.,"Preparation of TiO2 nanotube/nanoparticle composite particles and their applications in dye-sensitized solar cells", Nanoscale research letters, 7, 1-5(2012).
Li, H., He, X., Liu, Y., Yu, H., Kang, Z., and Lee, S.-T.J.M.R.B.,"Synthesis of fluorescent carbon nanoparticles directly from active carbon via a one-step ultrasonic treatment", Materials Research Bulletin, 46, 147-151(2011).
Li, L., Ma, Q., Wang, S., Song, S., Li, B., Guo, R., Cheng, X., and Cheng, Q.J.C.,"Photocatalytic performance and degradation mechanism of aspirin by TiO2 through response surface methodology", Catalysts, 8, 118(2018).
Liang, S., Li, M., Cao, J., Zuo, K., Bian, Y., Xiao, K., Huang, X.J.S., and Technology, P.,"Integrated ultrafiltration–capacitive-deionization (UCDI) for enhanced antifouling performance and synchronous removal of organic matter and salts", Separation and Purification Technology, 226, 146-153(2019).
Liu, N.-L., Sun, S.-H., Hou, C.-H.J.S., and Technology, P.,"Studying the electrosorption performance of activated carbon electrodes in batch-mode and single-pass capacitive deionization", Separation and Purification Technology, 215, 403-409(2019).
Liu, P.-I., Chung, L.-C., Ho, C.-H., Shao, H., Liang, T.-M., Horng, R.-Y., Chang, M.-C., Ma, C.-C.M.J.J.o.c., and science, i.,"Effects of activated carbon characteristics on the electrosorption capacity of titanium dioxide/activated carbon composite electrode materials prepared by a microwave-assisted ionothermal synthesis method", Journal of colloid and interface science, 446, 352-358(2015).
Liu, P., Wang, H., Yan, T., Zhang, J., Shi, L., and Zhang, D.J.J.o.M.C.A.,"Grafting sulfonic and amine functional groups on 3D graphene for improved capacitive deionization", Journal of materials chemistry A, 4, 5303-5313(2016a).
Liu, W., Cai, Z., Zhao, X., Wang, T., Li, F., Zhao, D.J.E.s., and technology."High-capacity and photoregenerable composite material for efficient adsorption and degradation of phenanthrene in water", Environmental Science & Technology, 50, 11174-11183(2016b).
Liu, W., Zhao, X., Wang, T., Zhao, D., and Ni, J.J.C.E.J.,"Adsorption of U (VI) by multilayer titanate nanotubes: effects of inorganic cations, carbonate and natural organic matter", Chemical Engineering Journal, 286, 427-435(2016c).
Liu, Y., Lu, X., Wu, F., Deng, N.J.R.K., Mechanisms, and Catalysis."Adsorption and photooxidation of pharmaceuticals and personal care products on clay minerals", Reaction Kinetics, Mechanisms and Catalysis, 104, 61-73(2011).
Lonappan, L., Pulicharla, R., Rouissi, T., Brar, S.K., Verma, M., Surampalli, R.Y., and Valero, J.R.J.J.o.C.A.,"Diclofenac in municipal wastewater treatment plant: quantification using laser diode thermal desorption—atmospheric pressure chemical ionization—tandem mass spectrometry approach in comparison with an established liquid chromatography-electrospray ionization–tandem mass spectrometry method", Journal of Chromatography A, 1433, 106-113(2016).
Lowell, S., and Shields, J.E.,"Powder surface area and porosity", 2, (2013).
Mombeshora, E.T., Simoyi, R., Nyamori, V.O., and Ndungu, P.G.J.S.A.J.o.C.,"Multiwalled carbon nanotube-titania nanocomposites: Understanding nano-structural parameters and functionality in dye-sensitized solar cells", South African Journal of Chemistry, 68, 153-164(2015).
Mossad, M., and Zou, L.J.C.e.j.,"Evaluation of the salt removal efficiency of capacitive deionisation: kinetics, isotherms and thermodynamics", Chemical Engineering Journal, 223, 704-713(2013).
N’diaye, A.D., and Kankou, M.S.A.J.J.o.E.T.T.,"Sorption of Aspirin from Aqueous Solutions using Rice Husk as Low Cost Sorbent", Journal of Environmental Treatment Techniques, 8, 1-5(2020).
Nasr, O., Mohamed, O., Al-Shirbini, A.-S., Abdel-Wahab, A.-M.J.J.o.P., and Chemistry, P.A.,"Photocatalytic degradation of acetaminophen over Ag, Au and Pt loaded TiO2 using solar light", Journal of Photochemistry and Photobiology A: Chemistry, 374, 185-193(2019).
Nghiem, L.D., Schäfer, A.I., Elimelech, M.J.E.s., and technology."Pharmaceutical retention mechanisms by nanofiltration membranes", Environmental Science & Technology, 39, 7698-7705(2005).
Nguyen, D.T., Tran, H.N., Juang, R.-S., Dat, N.D., Tomul, F., Ivanets, A., Woo, S.H., Hosseini-Bandegharaei, A., and Chao, H.-P.J.J.o.E.C.E.,"Adsorption process and mechanism of acetaminophen onto commercial activated carbon", Journal of Environmental Chemical Engineering, 8, 104408(2020).
Onesios, K.M., Jim, T.Y., and Bouwer, E.J.J.B.,"Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: a review", Biodegradation, 20, 441-466(2009).
Paola, A.D., Ikeda, S., Marcì, G., Ohtani, B., and Palmisano, L.J.I.J.o.P.,"Transition metal doped TiO2: physical properties and photocatalytic behaviour", International journal of photoenergy, 3, 171-176(2001).
Porada, S., Zhao, R., Van Der Wal, A., Presser, V., and Biesheuvel, P.J.P.i.m.s.,"Review on the science and technology of water desalination by capacitive deionization", Progress in materials science, 58, 1388-1442(2013).
Portales-Martínez, B., González-Huerta, R., Domínguez-Esquivel, J., and Cortes-Escobedo, C.A.J.J.o.N.M.f.E.S.,"Enhanced capacitance of microwave-assisted functionalized ordered mesopourous carbon for supercapacitors", Journal of New Materials for Electrochemical Systems, 15, 203-209(2012).
Praveen, P., Viruthagiri, G., Mugundan, S., Shanmugam, N.J.S.A.P.A.M., and Spectroscopy, B.,"Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles–Synthesized via sol–gel route", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 622-629(2014).
Ramadan, M., Hassan, H.M., Shahat, A., Elshaarawy, R.F., and Allam, N.K.J.N.J.o.C.,"Ultrahigh performance of novel energy-efficient capacitive deionization electrodes based on 3D nanotubular composites", New Journal of Chemistry, 42, 3560-3567(2018).
Scholar, E.M., Scholar, E.M., and Pratt, W.B.,"The antimicrobial drugs", (2000).
Shao, Q., Tang, J., Lin, Y., Li, J., Qin, F., Yuan, J., and Qin, L.-C.J.J.o.P.S.,"Carbon nanotube spaced graphene aerogels with enhanced capacitance in aqueous and ionic liquid electrolytes", Journal of Power Sources, 278, 751-759(2015).
Sharma, K., Kim, Y.-H., Gabitto, J., Mayes, R., Yiacoumi, S., Bilheux, H., Walker, L., Dai, S., and Tsouris, C.J.L.,"Transport of ions in mesoporous carbon electrodes during capacitive deionization of high-salinity solutions", Langmuir, 31, 1038-1047(2015).
Shen, R., and Andrews, S.A.J.W.R.,"Demonstration of 20 pharmaceuticals and personal care products (PPCPs) as nitrosamine precursors during chloramine disinfection", Water research, 45, 944-952(2011).
Snyder, S.A., Benotti, M.J.J.W.S., and Technology."Endocrine disruptors and pharmaceuticals: implications for water sustainability", Water Science and Technology, 61, 145-154(2010).
Soares, G.B., Vaz, C.M., Ribeiro, C., and Hermans, I.J.E.,"Insight into the Photocatalytical Activity of TiO2 Nanoparticles Through the Electrochemical Characterization of Carbon Paste Electrodes", Electrocatalysis, 6, 92-101(2015).
Son, M., Jeong, K., Yoon, N., Shim, J., Park, S., Park, J., and Cho, K.H.J.C.,"Pharmaceutical removal at low energy consumption using membrane capacitive deionization", Chemosphere, 276, 130133(2021).
Suhartana, P., and Darmawan, A.,"Effect of Iron, Aluminum and Zinc (as Anoda) on Metformin Deconcentration and Aspirin Deconcentration with Electrolysis Method", (2020).
Tamura, I., Yasuda, Y., Kagota, K.-i., Yoneda, S., Nakada, N., Kumar, V., Kameda, Y., Kimura, K., Tatarazako, N., Yamamoto, H.J.E., and safety, e.,"Contribution of pharmaceuticals and personal care products (PPCPs) to whole toxicity of water samples collected in effluent-dominated urban streams", Ecotoxicology and Environmental Safety, 144, 338-350(2017).
Thamaphat, K., Limsuwan, P., Ngotawornchai, B.J.A., and Resources, N.,"Phase characterization of TiO2 powder by XRD and TEM", Agriculture and Natural Resources, 42, 357-361(2008).
Vasiliadou, I.A., Molina, R., Martínez, F., and Melero, J.A.J.B.E.J.,"Biological removal of pharmaceutical and personal care products by a mixed microbial culture: sorption, desorption and biodegradation", Biochemical Engineering Journal, 81, 108-119(2013).
Wan, Z., and Wang, J.J.J.o.H.M.,"Degradation of sulfamethazine using Fe3O4-Mn3O4/reduced graphene oxide hybrid as Fenton-like catalyst", Journal of hazardous materials, 324, 653-664(2017).
Wang, C., Song, H., Zhang, Q., Wang, B., and Li, A.J.D.,"Parameter optimization based on capacitive deionization for highly efficient desalination of domestic wastewater biotreated effluent and the fouled electrode regeneration", Desalination, 365, 407-415(2015).
Wang, G., Qian, B., Dong, Q., Yang, J., Zhao, Z., Qiu, J.J.S., and Technology, P.,"Highly mesoporous activated carbon electrode for capacitive deionization", Separation and Purification Technology, 103, 216-221(2013a).
Wang, H., Zhang, D., Yan, T., Wen, X., Zhang, J., Shi, L., and Zhong, Q.J.J.o.M.C.A.,"Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization", Journal of materials chemistry A, 1, 11778-11789(2013b).
Wang, J., Yu, J., Zhu, X., and Kong, X.Z.J.N.r.l.,"Preparation of hollow TiO2 nanoparticles through TiO2 deposition on polystyrene latex particles and characterizations of their structure and photocatalytic activity", Nanoscale research letters, 7, 1-8(2012).
Wang, T., Liang, H., Bai, L., Liu, B., Zhu, X., Wang, J., Xing, J., Ren, N., and Li, G.J.J.o.T.E.S.,"Desalination Performance and Fouling Mechanism of Capacitive Deionization: Effects of Natural Organic Matter", Journal of The Electrochemical Society, 167, 043501(2020a).
Wang, T., Liang, H., Bai, L., Zhu, X., Gan, Z., Xing, J., Li, G., and Aminabhavi, T.M.J.C.E.J.,"Adsorption behavior of powdered activated carbon to control capacitive deionization fouling of organic matter", Chemical Engineering Journal, 384, 123277(2020b).
Wang, Y., Wei, X., Zhang, R., Wu, Y., Farid, M.U., and Huang, H.J.R.a.,"Comparison of chemical, ultrasonic and thermal regeneration of carbon nanotubes for acetaminophen, ibuprofen, and triclosan adsorption", RSC Advances, 7, 52719-52728(2017).
Wei, K., Zhang, Y., Han, W., Li, J., Sun, X., Shen, J., and Wang, L.J.D.,"A novel capacitive electrode based on TiO2-NTs array with carbon embedded for water deionization: Fabrication, characterization and application study", Desalination, 420, 70-78(2017).
Weng, W., Liu, J., Yin, C., Xie, H., Luo, G., Sun, W., and Li, G.J.I.J.E.S.,"Electrochemical Biosensor Based on Hemoglobin and Titanate Nanotubes Modified Electrode and its Application", Int. J. Electrochem. Sci, 14, 4309-4317(2019).
Wong, S., Lim, Y., Ngadi, N., Mat, R., Hassan, O., Inuwa, I.M., Mohamed, N.B., and Low, J.H.J.P.T.,"Removal of acetaminophen by activated carbon synthesized from spent tea leaves: equilibrium, kinetics and thermodynamics studies", Powder Technology, 338, 878-886(2018).
Xia, Y., Bian, X., Xia, Y., Zhou, W., Wang, L., Fan, S., Xiong, P., Zhan, T., Dai, Q., Chen, J.J.S., and Technology, P.,"Effect of indium doping on the PbO2 electrode for the enhanced electrochemical oxidation of aspirin: An electrode comparative study", Separation and Purification Technology, 237, 116321(2020).
Xie, G., Chang, X., Adhikari, B.R., Thind, S.S., and Chen, A.J.C.J.o.C.,"Photoelectrochemical degradation of acetaminophen and valacyclovir using nanoporous titanium dioxide", Chinese Journal of Catalysis, 37, 1062-1069(2016).
Xiong, Y., Zhao, J., Li, L., Wang, Y., Dai, X., Yu, F., and Ma, J.J.W.R.,"Interfacial interaction between micro/nanoplastics and typical PPCPs and nanoplastics removal via electrosorption from an aqueous solution", Water research, 184, 116100(2020).
Xu, Y., Liu, T., Zhang, Y., Ge, F., Steel, R.M., and Sun, L.J.J.o.M.C.A.,"Advances in technologies for pharmaceuticals and personal care products removal", Journal of materials chemistry A, 5, 12001-12014(2017).
Yan, C., Zou, L., and Short, R.J.D.,"Polyaniline-modified activated carbon electrodes for capacitive deionisation", Desalination, 333, 101-106(2014).
Yasin, A.S., Mohamed, H.O., Mohamed, I.M., Mousa, H.M., Barakat, N.A.J.S., and Technology, P.,"Enhanced desalination performance of capacitive deionization using zirconium oxide nanoparticles-doped graphene oxide as a novel and effective electrode", Separation and Purification Technology, 171, 34-43(2016).
Zavala, M.Á.L., Morales, S.A.L., and Ávila-Santos, M.J.H.,"Synthesis of stable TiO2 nanotubes: effect of hydrothermal treatment, acid washing and annealing temperature", Heliyon, 3, e00456(2017).
Zdravkov, B., Čermák, J., Šefara, M., and Janků, J.J.O.C.,"Pore classification in the characterization of porous materials: A perspective", Open Chemistry, 5, 385-395(2007).
Zhang, L.L., and Zhao, X.J.C.S.R.,"Carbon-based materials as supercapacitor electrodes", Chemical Society Reviews, 38, 2520-2531(2009).
Zhang, Q., Huang, W., Hong, J.-m., and Chen, B.-Y.J.C.E.J.,"Deciphering acetaminophen electrical catalytic degradation using single-form S doped graphene/Pt/TiO2", Chemical Engineering Journal, 343, 662-675(2018).
Zhang, Y., Jiang, Z., Huang, J., Lim, L.Y., Li, W., Deng, J., Gong, D., Tang, Y., Lai, Y., and Chen, Z.J.R.a.,"Titanate and titania nanostructured materials for environmental and energy applications: a review", RSC Advances, 5, 79479-79510(2015).
Zhao, S., Yan, T., Wang, Z., Zhang, J., Shi, L., and Zhang, D.J.R.a.,"Removal of NaCl from saltwater solutions using micro/mesoporous carbon sheets derived from watermelon peel via deionization capacitors", RSC Advances, 7, 4297-4305(2017).
指導教授 秦靜如(Ching-Ju Chin) 審核日期 2022-5-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明