參考文獻 |
Abdel-Ghani, N.T., Elsayed, H.A., AbdelMoied, S., 2018. Geopolymer synthesis by the alkali-activation of blastfurnace steel slag and its fire-resistance. Hbrc Journal 14, 159-164.
Aiken, T.A., Kwasny, J., Sha, W., Soutsos, M.N., 2018. Effect of slag content and activator dosage on the resistance of fly ash geopolymer binders to sulfuric acid attack. Cement and Concrete Research 111, 23-40.
Aigbe, U.O., Ukhurebor, K.E., Onyancha, R.B., Osibote, O.A., Darmokoesoemo, H., Kusuma, H.S.,2021. Fly ash-based adsorbent for adsorption of heavy metals and dyes from aqueous solution: a review. Journal of Materials Research and Technology 14, 2751-2774.
Alba, N., Vázquez, E., Gasso, S., Baldasano, J., 2001. Stabilization/solidification of MSW incineration residues from facilities with different air pollution control systems. Durability of matrices versus carbonation. Waste Management 21, 313-323.
Alinnor, I., 2007. Adsorption of heavy metal ions from aqueous solution by fly ash. Fuel 86, 853-857.
Al-Harahsheh, M.S., Al Zboon, K., Al-Makhadmeh, L., Hararah, M., Mahasneh, M., 2015. Fly ash based geopolymer for heavy metal removal: A case study on copper removal. Journal of Environmental Chemical Engineering 3, 1669-1677.
Almutairi, A.L., Tayeh, B.A., Adesina, A., Isleem, H.F., Zeyad, A.M., 2021. Potential applications of geopolymer concrete in construction: A review. Case Studies in Construction Materials 15, 00733. https://doi.org/10.1016/j.cscm.2021.e00733.
Al-Zboon, K., Al-Harahsheh, M.S., Hani, F.B., 2011. Fly ash-based geopolymer for Pb removal from aqueous solution. Journal of Hazardous Materials 188, 414-421.
Annadurai, G., Ling, L.Y., Lee, J.F., 2008. Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis. Journal of Hazardous Materials 152, 337-346.
Atanes, E., Cuesta-García, B., Nieto-Márquez, A., Fernández-Martínez, F., 2019. A mixed separation-immobilization method for soluble salts removal and stabilization of heavy metals in municipal solid waste incineration fly ash. Journal of Environmental Management 240, 359-367.
Bature, A., Khorami, M., Ganjian, E., Tyrer, M., 2021. Influence of alkali activator type and proportion on strength performance of calcined clay geopolymer mortar. Construction and Building Materials 267, 120446. https://doi.org/10.1016/j.conbuildmat.2020.120446.
Bayuseno, A., Schmahl, W.W., Müllejans, T., 2009. Hydrothermal processing of MSWI Fly Ash-towards new stable minerals and fixation of heavy metals. Journal of Hazardous Materials 167, 250-259.
Bie, R.S., Chen, P., Song, X.F., Ji, X.Y., 2016. Characteristics of municipal solid waste incineration fly ash with cement solidification treatment. Journal of the Energy Institute 89, 704-712.
Boghetich, G., Liberti, L., Notarnicola, M., Palma, M., Petruzzelli, D., 2005. Chloride extraction for quality improvement of municipal solid waste incinerator ash for the concrete industry. Waste Management & Research 23, 57-61.
Cai, J.M., Tan, J.W., Li, X.P., 2020. Thermoelectric behaviors of fly ash and metakaolin based geopolymer. Construction and Building Materials 237, 117757. https://doi.org/10.1016/j.conbuildmat.2019.117757.
Chen, L., Wang, Y.S., Wang, L., Zhang, Y.Y., Li, J., Tong, L.Z., Hu, Q., Dai, J.G., Tsang, D.C., 2021. Stabilisation/solidification of municipal solid waste incineration fly ash by phosphate-enhanced calcium aluminate cement. Journal of Hazardous Materials 408, 124404. https://doi.org/10.1016/j.jhazmat.2020.124404.
Cheng, T., Lee, M., Ko, M., Ueng, T., Yang, S., 2012. The heavy metal adsorption characteristics on metakaolin-based geopolymer. Applied Clay Science 56, 90-96.
Chiang, K.Y., Hu, Y.H., 2010. Water washing effects on metals emission reduction during municipal solid waste incinerator (MSWI) fly ash melting process. Waste Management 30, 831-838.
Chindaprasirt, P., Rattanasak, U., 2010. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer. Waste Management 30, 667-672.
Chithiraputhiran, S.R., 2012. Kinetics of alkaline activation of slag and fly ash-slag systems. Arizona State University.
Clavier, K.A., Liu, Y., Intrakamhaeng, V., Townsend, T.G., 2019. Re-evaluating the TCLP’s role as the regulatory driver in the management of municipal solid waste incinerator ash. Environmental Science and Technology 53, 7964-7973.
Clavier, K.A., Paris, J.M., Ferraro, C.C., Townsend, T.G., 2020. Opportunities and challenges associated with using municipal waste incineration ash as a raw ingredient in cement production–a review. Resources, Conservation and Recycling 160, 104888. https://doi.org/10.1016/j.resconrec.2020.104888
Cong, P., Cheng, Y., 2021. Advances in geopolymer materials: A comprehensive review. Journal of Traffic and Transportation Engineering (English Edition) 8 (3), 283–314.
Dahl, O., Nurmesniemi, H., Pöykiö, R., Watkins, G., 2009. Comparison of the characteristics of bottom ash and fly ash from a medium-size (32 MW) municipal district heating plant incinerating forest residues and peat in a fluidized-bed boiler. Fuel Processing Technology 90, 871-878.
Darmayanti, L., Kadja, G.T., Notodarmojo, S., Damanhuri, E., Mukti, R.R., 2019. Structural alteration within fly ash-based geopolymers governing the adsorption of Cu2+ from aqueous environment: Effect of alkali activation. Journal of Hazardous Materials 377, 305-314.
Darmayanti, L., Notodarmodjo, S., Damanhuri, E., 2017. Removal of Copper (II) Ions in Aqueous Solutions by Sorption onto Fly Ash. Journal of Engineering and Technological Sciences 49, 04007. https://doi.org/10.1051/matecconf/201814704007.
Davidovits J. 1982. The need to create a new technical language for the transfer of basic scientific information. In Transfer and Exploitation of Scientific and Technical Information, EUR 7716, 316-320.
Davidovits, J., 1984. Synthetic mineral polymer compound of the silicoaluminates family and preparation process. United States Patent.
Davidovits, J., 1991. Geopolymers: inorganic polymeric new materials. Journal of Thermal Analysis and Calorimetry 37, 1633-1656.
Davidovits, J., 2008. Geopolymer chemistry and applications. Institut Geopolymer, Geopolymer Institute, Saint-Quentin, France.
De Silva, P., Sagoe-Crenstil, K., Sirivivatnanon, V., 2007. Kinetics of geopolymerization: role of Al2O3 and SiO2. Cement and Concrete Research 37, 512-518.
Du, B., Li, J.T., Fang, W., Liu, J.U., 2019. Comparison of long-term stability under natural ageing between cement solidified and chelator-stabilised MSWI fly ash. Environmental Pollution 250, 68-78.
Duxson, P., Mallicoat, S.W., Lukey, G.C., Kriven, W.M., van Deventer, J.S., 2007. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 292, 8-20.
Drochytka, R., Černý, V., 2020. Influence of fluidized bed combustion fly ash admixture on hydrothermal synthesis of tobermorite in the mixture with quartz sand, high temperature fly ash and lime. Construction and Building Materials 230.
Environment, U.N., Scrivener, K.L., John, V.M., Gartner, E.M., 2018. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research 114, 2-26.
Fan, C.C., Wang, B.M., Ai, H.M., Qi, Y., Liu, Z., 2021. A comparative study on solidification/stabilization characteristics of coal fly ash-based geopolymer and Portland cement on heavy metals in MSWI fly ash. Journal of Cleaner Production 319.
Galiano, Y.L., Pereira, C.F., Vale, J, 2011. Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers. Journal of Hazardous Materials 185, 373-381.
Gan, M., Wong, G.J., Fan, X.H., Ji, Z.Y., Ye, H.D., Zhou, Z., Wang, Z.C., 2021. Enhancing the degradation of dioxins during the process of iron ore sintering co-disposing municipal solid waste incineration fly ash. Journal of Cleaner Production 291.
Gisela, W., Urs, E., Dmitrii A, K., Wolfgang, H., Stefan, S., Waldemar, K., Martin, F., Urs K, M.,2018. Extraction of heavy metals from MSWI fly ash using hydrochloric acid and sodium chloride solution. Waste Management 76, 457-471.
Goretta, K., Gutierrez-Mora, F., Singh, D., Routbort, J., Lukey, G., Van Deventer, J., 2007. Erosion of geopolymers made from industrial waste. Journal of Materials Science 42, 3066-3072.
Görhan, G., Kürklü, G., 2014. The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Composites Part B: Engineering 58, 371-377.
Guo, X.L., Zhang, L.Y., Huang, J.B., Shi, H.S., 2017. Detoxification and solidification of heavy metal of chromium using fly ash-based geopolymer with chemical agents. Construction and Building Materials 151, 394-404.
Hartmann, S., Koval’, L., Škrobánková, H., Matýsek, D., Winter, F., Purgar, A., 2015. Possibilities of municipal solid waste incinerator fly ash utilisation. Waste Management and Research 33, 740-747.
He, P., Zhang, Y., Zhang, X., Chen, H., 2021. Diverse zeolites derived from a circulating fluidized bed fly ash based geopolymer for the adsorption of lead ions from wastewater. Journal of Cleaner Production 312, 127769. https://doi.org/10.1016/j.jclepro.2021.127769.
Hoc Thang, N., Trung Kien, P., Mohd Mustafa Al Bakri, A., 2017. Lightweight heat resistant geopolymer-based materials synthesized from red mud and rice husk ash using sodium silicate solution as alkaline activator. MATEC Web of Conferences 97, 01119. https://doi.org/10.1051/matecconf/20179701119.
Ho, Y.S., McKay, G., 1999. Pseudo-second order model for sorption processes. Process Biochemistry 34, 451-465.
Hu, Y.Y., Zhang, P.F., Li, J.P., Chen, D.Z., 2015. Stabilization and separation of heavy metals in incineration fly ash during the hydrothermal treatment process. Journal of Hazardous Materials 299, 149-157.
Hu, Y., Yang, F., Chen, F., Feng, Y., Chen, D., Dai, X., 2018. Pyrolysis of the mixture of MSWI fly ash and sewage sludge for co-disposal: Effect of ferrous/ferric sulfate additives. Waste Management 75, 340-351.
Huang, T., Li, D., Kexiang, L., Zhang, Y., 2015. Heavy metal removal from MSWI fly ash by electrokinetic remediation coupled with a permeable activated charcoal reactive barrier. Scientific Reports 5, 1-16.
Hwang, C.L., Huynh, T.P., 2015. Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers. Construction and Building Materials 101, 1-9.
Javadian, H., Ghorbani, F., Tayebi, H.-a., Asl, S.H., 2015. Study of the adsorption of Cd (II) from aqueous solution using zeolite-based geopolymer, synthesized from coal fly ash; kinetic, isotherm and thermodynamic studies. Arabian Journal of Chemistry 8, 837-849.
Jin, M., Zheng, Z., Sun, Y., Chen, L., Jin, Z., 2016. Resistance of metakaolin-MSWI fly ash based geopolymer to acid and alkaline environments. Journal of Non-Crystalline Solids 450, 116-122.
Jin, Y., Feng, W.P., Zheng, D.P., Dong, Z.J., Cui, H.Z., 2020. Structure refinement of fly ash in connection with its reactivity in geopolymerization. Waste Management 118, 350-359.
Jung, B., Schobert, H.H., 1991. Viscous sintering of coal ashes. 1. Relationships of sinter point and sinter strength to particle size and composition. Energy and Fuels 5, 555-561.
Kara, İ., Yilmazer, D., Akar, S.T., 2017. Metakaolin based geopolymer as an effective adsorbent for adsorption of zinc (II) and nickel (II) ions from aqueous solutions. Applied Clay Science 139, 54-63.
Kobayashi, Y., Ogata, F., Nakamura, T., Kawasaki, N., 2020. Synthesis of novel zeolites produced from fly ash by hydrothermal treatment in alkaline solution and its evaluation as an adsorbent for heavy metal removal. Journal of Environmental Chemical Engineering 8, 103687. https://doi.org/10.1016/j.jece.2020.103687.
Lahoti, M., Wong, K.K., Tan, K.H., Yang, E., 2018. Effect of alkali cation type on strength endurance of fly ash geopolymers subject to high temperature exposure. Materials and Design 154, 8-19.
Lancellotti, I., Kamseu, E., Michelazzi, M., Barbieri, L., Corradi, A., Leonelli, C., 2010. Chemical stability of geopolymers containing municipal solid waste incinerator fly ash. Waste Management 30, 673-679.
Lau, C.K., Lee, H., Vimonsatit, V., Huen, W.Y., Chindaprasirt, P., 2019. Abrasion resistance behaviour of fly ash based geopolymer using nanoindentation and artificial neural network. Construction and Building Materials 212, 635-644.
Lenormand, T., Rozière, E., Loukili, A., Staquet, S., 2015. Incorporation of treated municipal solid waste incineration electrostatic precipitator fly ash as partial replacement of Portland cement: Effect on early age behaviour and mechanical properties. Construction and Building Materials 96, 256-269.
Li, L., Wang, S., Zhu, Z., 2006. Geopolymeric adsorbents from fly ash for dye removal from aqueous solution. Journal of Colloid and Interface Science 300, 52-59.
Liu, H., Lu, H., Chen, D., Wang, H., Xu, H., Zang, R., 2009. Preparation and propertiier of glass-ceramics derived from blast-furnance slag by a ceramic-sintering process. Ceramics Internation, 35(8), 3181-3184.
Liu, Y., Yan, C.J., Zhao, J.J., Zhang, Z.H., Wang, H.Q., Zhou, S., Wu, L.M., 2018. Synthesis of zeolite P1 from fly ash under solvent-free conditions for ammonium removal from water. Journal of Cleaner Production 202, 11-22.
Longhi, M.A., Rodriguez, E.D., Walkley, B., Zhang, Z., Kirchheim, A.P., 2020. Metakaolin-based geopolymers: Relation between formulation, physicochemical properties and efflorescence formation. Composites Part B: Engineering 182, 107671. https://doi.org/10.1016/j.compositesb.2019.107671.
Loginova, E., Proskurnin, M., Brouwers, H., 2019. Municipal solid waste incineration (MSWI) fly ash composition analysis: a case study of combined chelatant-based washing treatment efficiency. Journal of Environmental Management 235, 480-488.
Lori, I.S., Toufigh, M.M., Toufigh, V., 2021. Improvement of poorly graded sandy soil by using copper mine tailing dam sediments-based geopolymer and silica fume. Construction and Building Materials 281, 122591. https://doi.org/10.1016/j.conbuildmat.2021.122591.
Ma, Z., Zhang, S., Zhang, H., Cheng, F., 2019. Novel extraction of valuable metals from circulating fluidized bed-derived high-alumina fly ash by acid–alkali–based alternate method. Journal of Cleaner Production 230, 302-313.
Majdan, M., Pikus, S., Kowalska-Ternes, M., Gładysz-Płaska, A., Staszczuk, P., Fuks, L., Skrzypek, H., 2003. Equilibrium study of selected divalent d-electron metals adsorption on A-type zeolite. Journal of Colloid and Interface Science 262, 321-330.
Mandal, S., Calderon, J., Marpu, S.B., Omary, M.A., Shi, S.Q., 2021. Mesoporous activated carbon as a green adsorbent for the removal of heavy metals and Congo red: Characterization, adsorption kinetics, and isotherm studies. Journal of Contaminant Hydrology 243, 103869. https://doi.org/10.1016/j.jconhyd.2021.103869.
Mangialardi, T., 2003. Disposal of MSWI fly ash through a combined washing-immobilisation process. Journal of Hazardous Materials 98, 225-240.
Malandrinos, G., Hadjiliadis, N., 2014. Cu (II)–histones interaction related to toxicity-carcinogenesis. Coordination Chemistry Reviews 262, 55-71.
Maleki, A., Hajizadeh, Z., Sharifi, V., Emdadi, Z., 2019. A green, porous and eco-friendly magnetic geopolymer adsorbent for heavy metals removal from aqueous solutions. Journal of Cleaner Production 215, 1233-1245.
Messina, F., Ferone, C., Molino, A., Roviello, G., Colangelo, F., Molino, B., Cioffi, R., 2017. Synergistic recycling of calcined clayey sediments and water potabilization sludge as geopolymer precursors: Upscaling from binders to precast paving cement-free bricks. Construction and Building Materials 133, 14-26.
Nath, S., Kumar, S., 2020. Role of particle fineness on engineering properties and microstructure of fly ash derived geopolymer. Construction and Building Materials 233, 117294. https://doi.org/10.1016/j.conbuildmat.2019.117294
Okada, T., Suzuki, M., 2013. Effect of ash circulation in gasification melting system on concentration and leachability of lead in melting furnace fly ash. Journal of Environmental Management 130, 347-353.
Ogawa, N., Amano, T., Nagai, Y., Hagiwara, K., Honda, T., Koike, Y., 2021. Water repellents for the leaching control of heavy metals in municipal solid waste incineration fly ash. Waste Management 124, 154-159.
Panhwar, A.H., Kazi, T.G., Afridi, H.I., Arain, S.A., Arain, M.S., Brahaman, K.D., Arain, S.S., 2016. Correlation of cadmium and aluminum in blood samples of kidney disorder patients with drinking water and tobacco smoking: related health risk. Environmental Geochemistry and Health 38, 265-274.
Panias, D., Giannopoulou, I.P., Perraki, T., 2007. Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 301, 246-254.
Peng, Z., Weber, R., Ren, Y., Wang, J.W., Sun, Y.Z., Wang, L.F., 2020. Characterization of PCDD/Fs and heavy metal distribution from municipal solid waste incinerator fly ash sintering process. Waste Management 103, 260-267.
Phoo-ngernkham, T., Sata, V., Hanjitsuwan, S., Ridtirud, C., Hatanaka, S., Chindaprasirt, P., 2015. High calcium fly ash geopolymer mortar containing Portland cement for use as repair material. Construction and Building Materials 98, 482-488.
Purkait, M., Gusain, D., DasGupta, S., De, S., 2005. Adsorption behavior of chrysoidine dye on activated charcoal and its regeneration characteristics by using different surfactants. Separation Science and Technology 39, 2419-2440.
Prud′Homme, E., Michaud, P., Joussein, E., Peyratout, C., Smith, A., Rossignol, S., 2011. In situ inorganic foams prepared from various clays at low temperature. Applied Clay Science 51, 15-22.
Qiu, Q., Jiang, X., Lü, G., Chen, Z., Lu, S., Ni, M., Yan, J., Deng, X., 2019. Degradation of PCDD/Fs in MSWI fly ash using a microwave-assisted hydrothermal process. Chinese Journal of Chemical Engineering 27, 1708-1715.
Qiu, Q., Jiang, X., Lv, G., Chen, Z., Lu, S., Ni, M., Yan, J., Deng, X., 2018. Adsorption of heavy metal ions using zeolite materials of municipal solid waste incineration fly ash modified by microwave-assisted hydrothermal treatment. Powder Technology 335, 156-163.
Ren, D., Yan, C., Duan, P., Zhang, Z., Li, L., Yan, Z., 2017. Durability performances of wollastonite, tremolite and basalt fiber-reinforced metakaolin geopolymer composites under sulfate and chloride attack. Construction and Building Materials 134, 56-66.
Rostislav, D., 2020. Influence of fluidized bed combustion fly ash admixture on hydrothermal synthesis of tobermorite in the mixture with quartz sand, high temperature fly ash and lime. Construction and Building Materials 230, 117033. https://doi.org/10.1016/j.conbuildmat.2019.117033.
Rovnaník, P., 2010. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Construction and Building Materials 24, 1176-1183.
Sahoo, S., Selvaraju, A.K., 2020. Mechanical characterization of structural lightweight aggregate concrete made with sintered fly ash aggregates and synthetic fibres. Cement and Concrete Composites 113, 103712. https://doi.org/10.1016/j.cemconcomp.2020.103712.
Saleh, T., Mustaqeem, M., Khaled, M., 2021. Water treatment technologies in removing heavy metal ions from wastewater: A review. Environmental Nanotechnology, Monitoring and Management 17, 100617. https://doi.org/10.1016/j.enmm.2021.100617.
Setoodeh Jahromy, S., Jordan, C., Azam, M., Werner, A., Harasek, M., Winter, F., 2019. Fly ash from municipal solid waste incineration as a potential thermochemical energy storage material. Energy and Fuels 33, 5810-5819.
Shi, H., Ma, H.W., Tian, L.A., Yang, J., Yuan, J.Y., 2020. Effect of microwave curing on metakaolin-quartz-based geopolymer bricks. Construction and Building Materials 258, 120354. https://doi.org/10.1016/j.conbuildmat.2020.120354.
Siyal, A.A., Shamsuddin, M.R., Rabat, N.E., Zulfiqar, M., Man, Z., Low, A., 2019. Fly ash based geopolymer for the adsorption of anionic surfactant from aqueous solution. Journal of Cleaner Production 229, 232-243.
Skrifvars, B.-J., Hupa, M., Backman, R., Hiltunen, M., 1994. Sintering mechanisms of FBC ashes. Fuel 73, 171-176.
Sun, Y.F., Hu, S.G., Zhang, P., Elmaadawy, K.L., Ke, Y., Li, J.H., Li, M.Y., Hu, J.P., Liu, B.C., Yang, J.K., 2020. Microwave enhanced solidification/stabilization of lead slag with fly ash based geopolymer. Journal of Cleaner Production 272, 122957. https://doi.org/10.1016/j.jclepro.2020.122957.
Swanepoel, J.C., Strydom, C.A., 2002. Utilisation of fly ash in a geopolymeric material. Applied Geochemistry 17, 1143-1148.
Tang, J., Su, M., Wu, Q., Wei, L., Wang, N., Xiao, E., Zhang, H., Wei, Y., Liu, Y., Ekberg, C., 2019. Highly efficient recovery and clean-up of four heavy metals from MSWI fly ash by integrating leaching, selective extraction and adsorption. Journal of Cleaner Production 234, 139-149.
Tian, Z.P., Zhang, B.R., He, C.J., Tang, R.Z., Zhao, H.P., Li, F.T., 2015. The physiochemical properties and heavy metal pollution of fly ash from municipal solid waste incineration. Process Safety and Environmental Protection 98, 333-341.
Tzanakos, K., Mimilidou, A., Anastasiadou, K., Stratakis, A., Gidarakos, E., 2014. Solidification/stabilization of ash from medical waste incineration into geopolymers. Waste Management 34, 1823-1828.
Ukhurebor, K.E., Aigbe, U.O., Onyancha, R.B., Nwankwo, W., Osibote, O.A., Paumo, H.K., Ama, O.M., Adetunji, C.O., Siloko, I.U., 2021. Effect of hexavalent chromium on the environment and removal techniques: a review. Journal of Environmental Management 280, 111809. https://doi.org/10.1016/j.jenvman.2020.111809.
Vigdorowitsch, M., Pchelintsev, A., Tsygankova, L., Tanygina, E., 2021. Freundlich Isotherm: An Adsorption Model Complete Framework. Applied Sciences 11, 8078. https://doi.org/10.3390/app11178078.
Wang, H.L., Li, H.H., Yan, F.Y., 2005. Synthesis and mechanical properties of metakaolinite-based geopolymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects 268, 1-6.
Wang, L., Jin, Y., Nie, Y., Li, R., 2010. Recycling of municipal solid waste incineration fly ash for ordinary Portland cement production: A real-scale test. Resources, Conservation and Recycling 54, 1428-1435.
Wang, Qunhui, Yang, Jie, Wang, Qi, Wu, Tingji, 2009. Effects of water-washing pretreatment on bioleaching of heavy metals from municipal solid waste incinerator fly ash. Journal of Hazardous Materials 162, 812-818.
Wang, X.X, Zhu, K.Y., Zhang, L., Li, A.M, Chen, C.S., Huang, J.X., Zhang, Y.L., 2022. Mechanical property and heavy metal leaching behavior enhancement of municipal solid waste incineration fly ash during the pressure-assisted sintering treatment. Journal of Environmental Management 301, 113856. https://doi.org/10.1016/j.jenvman.2021.113856.
Wei, B., Yang, L., 2010. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal 94, 99-107.
Wu, Y.H., Pang, H.W., Liu, Y., Wang, X.X, Yu, S.J., Fu, D., Chen, J.R., Wang, X.K., 2019. Environmental remediation of heavy metal ions by novel-nanomaterials: a review. Environmental Pollution 246, 608-620.
Xiao, R., Ma, Y., Jiang, X., Zhang, M., Zhang, Y., Wang, Y., Huang, B., He, Q., 2020. Strength, microstructure, efflorescence behavior and environmental impacts of waste glass geopolymers cured at ambient temperature. Journal of Cleaner Production. 252, 119610. https://doi.org/10.1016/j.jclepro.2019.119610
Xu, G., Shi, X., 2018. Characteristics and applications of fly ash as a sustainable construction material: A state-of-the-art review. Resources, Conservation and Recycling 136, 95-109.
Xu, H., Van Deventer, J., 2000. The geopolymerisation of alumino-silicate minerals. International Journal of Mineral Processing 59, 247-266.
Xu, Z., Zhang, Q.G., Li, X.C., Huang, X.F., 2022. A critical review on chemical analysis of heavy metal complexes in water/wastewater and the mechanism of treatment methods. Chemical Engineering Journal 429, 1385-8947.
Xue, X., Liu, Y.L., Dai, J.G., Poon, C.S., Zhang, W.D., Zhang, P., 2018. Inhibiting efflorescence formation on fly ash–based geopolymer via silane surface modification. Cement and Concrete Composites 94, 43-52.
Yan, Dahai, Peng, Zheng, Yu, Lifeng, Sun, Yangzhao, Yong, Ren, Karstensen, Kåre Helge, 2018. Characterization of heavy metals and PCDD/Fs from water-washing pretreatment and a cement kiln co-processing municipal solid waste incinerator fly ash. Waste Management 76, 106-116.
Yan, S., Zhang, F., Wang, L., Rong, Y., He, P., Jia, D., Yang, J., 2019. A green and low-cost hollow gangue microsphere/geopolymer adsorbent for the effective removal of heavy metals from wastewaters. Journal of Environmental Management 246, 174-183.
Yang, G.C., Chuang, T.N., Huang, C.W., 2017. Achieving zero waste of municipal incinerator fly ash by melting in electric arc furnaces while steelmaking. Waste Management 62, 160-168.
Yu, Z., Song, W., Li, J., Li, Q., 2020. Improved simultaneous adsorption of Cu (II) and Cr (VI) of organic modified metakaolin-based geopolymer. Arabian Journal of Chemistry 13, 4811-4823.
Yuan, J.K., Li, L.Z., He, P.G., Chen, Z.W., Lao, C.S., Jia, D.C., Zhou, Y., 2021. Effects of kinds of alkali-activated ions on geopolymerization process of geopolymer cement pastes. Construction and Building Materials 293, 123536. https://doi.org/10.1016/j.conbuildmat.2021.123536.
Zhang, J., Provis, J.L., Feng, D., van Deventer, J.S., 2008. The role of sulfide in the immobilization of Cr (VI) in fly ash geopolymers. Cement and Concrete Research 38, 681-688.
Zhang, M., Deskins, N.A., Zhang, G., Cygan, R.T., Tao, M., 2018. Modeling the polymerization process for geopolymer synthesis through reactive molecular dynamics simulations. The Journal of Physical Chemistry C 122, 6760-6773.
Zheng, L., Wang, W., Shi, Y., 2010. The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer. Chemosphere 79, 665-671.
Zeng, S., Wang, J., 2016. Characterization of mechanical and electric properties of geopolymers synthesized using four locally available fly ashes. Construction and Building Materials 121, 386-399.
王鯤生,魏玉麟,劉錡樺,黃子光,朱天鈞,泥渣廢棄物處理轉換環境淨化資材之研究--泥渣廢棄物合成高效吸附功能複合材料之開發研究(I),行政院國家科學委員會專題研究計畫,2010。
江康鈺,陳雅馨,周綵蓉,呂承翰,無機聚合材料萃製及成形技術研究,行政院原子能委員會委託研究計劃研究報告,2015。
江康鈺,王啟宗,都市垃圾焚化飛灰與淨水污泥共同燒結產物之動力及材料特性研究,中華民國環境工程學會2008廢棄物處理技術研討會,台北,2008。
李祐承,張祖恩,陳盈良,彭信源,張繼譽,應用焚化飛灰產製高壓蒸氣養護氣泡混凝土,中華民國環境工程學會2014廢棄物處理技術研討會,台中,2014。
李善源,陳盈良,謝尚谷,陳湘涵,王俊瑋,張祖恩,水洗焚化飛灰再利用於輕質混凝土之研究,中華民國環境工程學會2021廢棄物處理技術研討會,台中,2021。
李怡華,應用無機聚合物技術探討都市垃圾焚化飛灰無害化之可行性研究,國立中央大學環境工程研究所,碩士論文,桃園,2018。
林柏翰,郭益銘,周宜成,黃菀婷,吳仲霖,張志平,高鹽飛灰淘洗殘渣作為焚化爐輔助燃料之可行性研究,中華民國環境工程學會2011廢棄物處理技術研討會,台南,2011。
林凱隆,許皓翔,鄭大偉,黃兆龍,TFT-LCD 廢玻璃以不同 SiO2/Na2O 比製備無機聚合物之研究,中華民國環境工程學會2011廢棄物處理技術研討會,台南,2011。
林育緯,不同鹼激發劑對爐石飛灰無機聚合物工程性質之影響,國立臺灣科技大學營建工程系,碩士論文,台北,2012。
林凱隆,羅康維,水洗飛灰與廢棄泥渣類共燒製環保水泥之研究,中華民國環境工程學會2013廢棄物處理技術研討會,高雄,2013。
林凱裕,黃菀婷,林子洂,曾思萍,賴淳仁,郭益銘,以回收廢硫酸之概念技術降低焚化飛灰中有害物質之再利用研究,中華民國環境工程學會2014廢棄物處理技術研討會,台中,2014。
林聖淇,李政萱,徐偉展,黃致展,張尊國,陽離子交換樹脂(IR-120)對重金屬的吸附效率與影響因子之探討,中華民國環境工程學會2015廢棄物處理技術研討會,桃園,2015。
林以潔,陳志成,江金龍,焚化飛灰鹼熔水熱合成沸石之最佳操作條件研究,中華民國環境工程學會2016廢棄物處理技術研討會,屏東,2016。
林凱隆,羅康維,林雅雯,鄭大偉,回收再利用藍寶石基板碳化矽污泥製備無機聚合物之鹼活化特性研究,中華民國環境工程學會2021廢棄物處理技術研討會,台中,2021。
林以潔,焚化飛灰鹼熔水熱合成沸石與再利用研究,弘光科技大學環境工程研究所,碩士論文,台中,2016。
邱孔濱,張坤森,蘇薏茹,朱怡儒,陳瑭恩,呂方瑜,MSWI飛灰製成水晶玻璃之循環經濟高值化研究,中華民國環境工程學會2017廢棄物處理技術研討會,台北,2017
邱孔濱,張坤森,曾昭恩,黃孝綸,黃子源,龔聖瑋,D類焚化飛灰再利用製成紅磚之研究,中華民國環境工程學會2020廢棄物處理技術研討會,桃園,2020。
邱孔濱,張坤森,黃琦雯,黃子寧,連郁潔,林沛妤, MSWI飛灰無害化與再利用模型廠之精進節水研究,中華民國環境工程學會2021廢棄物處理技術研討會,台中,2021。
邱孔濱,張坤森,柯昀萱,陳湘涵,丁婧,葉亭里,開發HIFA無害化與穩定化處理技術之研究,中華民國環境工程學會2021廢棄物處理技術研討會,台中,2021。
徐宏德,何汶誠,蔣立中,張益國,施百鴻,鹼活化技術運用於焚化飛灰中重金屬鉛固定化之研究,中華民國環境工程學會2016廢棄物處理技術研討會,屏東,2016。
徐于嵐,陳慶榮,陳冠中,李英杰,以再生長石吸附水中重金屬之探討,中華民國環境工程學會2019廢棄物處理技術研討會,台中,2019。
徐誠隆,張坤森,邱孔濱,許舜傑,余家君,林柏勝,以垃圾焚化飛灰燒製高值化微晶玻璃之研究,中華民國環境工程學會2020廢棄物處理技術研討會,桃園,2020。
莊雅琍,蔗渣灰爐石基無機聚合物之工程性質,國立高雄應用科技大學土木工程與防災科技研究所,碩士論文,高雄,2017。
張坤森,徐義復,劉美芬,楊慶翔,廢棄燃煤飛灰製備多孔陶瓷之特性分析及其可行性之研究,中華民國環境工程學會2010環境資訊與規劃管理研討會,高雄,2010。
張坤森,鍾日熙,陳麗萍,黃晨豪,柯韋丞,林衢宏,垃圾焚化廠水洗飛灰再利用製成紅磚之可行性研究,中華民國環境工程學會2013廢棄物處理技術研討會,高雄,2013。
張坤森,邱孔濱,羅文鴻,王琳瑋,林昇彥,徐誠隆,我國垃圾焚化飛灰再利用之困境及去化市場分析研究,中華民國環境工程學會2015廢棄物處理技術研討會,桃園,2015。
張格誌,鄭大偉,焚化飛灰資源化及製成無機聚合綠色水泥之研究,中華民國環境工程學會2015廢棄物處理技術研討會,桃園,2015。
張坤森,蘇薏茹,邱孔濱,徐誠隆,楊之葶,利於垃圾焚化飛灰再利用之精進無害化處理研究,中華民國環境工程學會2016廢棄物處理技術研討會,屏東,2016。
張坤森,胡智豪,吳宗勳,徐誠隆,楊之葶,洪資喻,無害化MSWI飛灰強化資源化混凝土之可行性研究,中華民國環境工程學會2017廢棄物處理技術研討會,台北,2017。
張坤森,邱孔濱,黃孝綸,黃琦雯,黃清珊,張晴晴,開發有害事業廢棄物焚化飛灰轉化為有價玻璃之研究,中華民國環境工程學會2021廢棄物處理技術研討會,台中,2021。
張坤森,郭曉恬,陳筱逸,魏意銘,陳欣宜,陳麗萍,水及酸萃取程序去除MSWI飛灰Pb之無害化研究,中華民國環境工程學會2021廢棄物處理技術研討會,台中,2021。
張坤森、邱孔濱、陳麗萍、潘志明、鍾日熙,垃圾焚化飛灰特性、處理再利用技術、法規與未來展望,環境工程會刊第 23 卷第 2 期,2012。
章裕民,賴俊瑋,林修毅,詹家凱,邱秉澤,楊超太,焚化飛灰資源化處理技術-氯含量與鉛重金屬削減之研究,中華民國環境工程學會2012廢棄物處理技術研討會,高雄,2012。
高佳君,應用無機聚合物穩定受重金屬污染底泥之可行性研究,中華民國環境工程學會2020廢棄物處理技術研討會,桃園,2020。
陳信彧,洪保鎮,張木彬,以批次與動態溶出探討飛灰中重金屬及戴奧辛之溶出特性,中華民國環境工程學會2012廢棄物處理技術研討會,高雄,2012。
陳志成,林以潔,蔡筑廷,陳昀萱,焚化底渣水熱合成沸石及其吸附特性研究,中華民國環境工程學會2021廢棄物處理技術研討會,台中,2021。
陳建辰,無機聚合物添加紅黏土材料之性能研究,國立臺北科技大學土木與防災研究所,碩士論文,台北,2014。
陳善慶,工業廢水之電化學法處理技術開發:有機物及重金屬移除,逢甲大學材料科學與工程學系,博士論文,台中,2017。
陳冠宇,焚化灰渣再利用製成無機聚合物之研究,逢甲大學環境工程與科學學系,碩士論文,台中,2019。
陳麗萍,垃圾焚化飛灰無害化及資材化作為混凝土與紅磚之研究,國立聯合大學環境與安全衛生工程學系碩士班,碩士論文,苗栗,2013。
許育婷,林以潔,陳志成,焚化底渣合成環保吸附材料之效能測試研究,中華民國環境工程學會2020廢棄物處理技術研討會,桃園,2020。
許皓翔,TFT-LCD廢玻璃以鹼激發方式製成防火材料之研究,國立宜蘭大學環境工程學系碩士班,碩士論文,宜蘭,2011。
許閎智,無機聚合物添加飛灰材料之開發研究,國立臺北科技大學土木與防災研究所,碩士論文,台北,2013。
許育婷,焚化底渣合成環保吸附材料及其應用效能與特性研究,逢甲大學環境工程與科學學系,碩士論文,台中,2021。
黃富昌,陳慶和,以等溫吸/脫附動力曲線探討土壤對有機污染物吸附特性之研究,台灣環境資源永續發展研討會,2005。
黃承鈞,李明國,孫常榮,高思懷,都市垃圾焚化飛灰應用於燒製紅磚資源化之研究,中華民國環境工程學會2010廢棄物處理技術研討會,高雄,2010。
黃千紋,利用煉鋼電弧爐熔融處理垃圾焚化飛灰之效益評估,國立中山大學環境工程研究所,碩士論文,高雄,2005。
黃秋松,添加無機聚合物黏土磚材料之開發研究,國立臺北科技大學土木與防災研究所,碩士論文,台北,2012。
黃晨豪,多元技術去除垃圾焚化飛灰氯含量、重金屬及戴奧辛之研究,國立聯合大學環境與安全衛生工程學系碩士班,碩士論文,苗栗,2014。
曾郁雯,楊雅婷,周宜成,林子洂,林宏諭,郭益銘,以焚化飛灰再利用作為熱熔融添加劑處裡電鍍鎳銅污泥之研究,中華民國環境工程學會2013廢棄物處理技術研討會,高雄,2013。
詹家凱,李如傑,范文彬,楊超太,劉建中,章裕民,垃圾焚化飛灰燒結骨材之研究,中華民國環境工程學會2010廢棄物處理技術研討會,高雄,2010。
趙怡鈞,林凱裕,賴淳仁,郭益銘,以回收廢酸之創新概念技術分離處理再利用焚化飛灰之研究,中華民國環境工程學會2013廢棄物處理技術研討會,高雄,2013。
劉錡樺,朱天鈞,陳虹屹,王鯤生,水處理污泥合成複合吸附劑去除水中污染物之研究,中華民國環境工程學會2010廢棄物處理技術研討會,高雄,2010。
劉厚伯,張祖恩,陳盈良,戴育陞,焚化飛灰資源化產製鈣矽水合材料之研究,中華民國環境工程學會2019廢棄物處理技術研討會,台中,2019。
鄭棟元,黃兆龍,劉軍,不同配比混凝土內置鋼筋之腐蝕行為及防蝕策略。防蝕工程 21,223-235,2007。
戴于盛,鄭大偉,柯明賢,無機聚合綠色水泥應用於固化焚化飛灰之研究,中華民國環境工程學會2012廢棄物處理技術研討會,高雄,2012。
簡呈至,柯明賢,焚化飛灰穩定化物再利用作為混凝土磚可行性之探討,中華民國環境工程學會2012廢棄物處理技術研討會,高雄,2012。 |