參考文獻 |
[1.] 莊純琪、高秋芳&蔡嘉寅. (2008). 全球環境與農業面臨之挑戰. Retrieved from https://www.coa.gov.tw/ws.php?id=13826&print=Y
[2.] Johnson, D. M. J. R. S. o. E. (2014). An assessment of pre-and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. 141, 116-128.
[3.] Becker-Reshef, I., Justice, C., Sullivan, M., Vermote, E., Tucker, C., Anyamba, A., . . . Schmaltz, J. J. R. S. (2010). Monitoring global croplands with coarse resolution earth observations: The Global Agriculture Monitoring (GLAM) project. 2(6), 1589-1609.
[4.] Gao, F., & Anderson, M. (2019). Evaluating yield variability of corn and soybean using Landsat-8, Sentinel-2 and Modis in Google Earth Engine. Paper presented at the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium.
[5.] Sakamoto, T. J. I. J. o. P., & Sensing, R. (2020). Incorporating environmental variables into a MODIS-based crop yield estimation method for United States corn and soybeans through the use of a random forest regression algorithm. 160, 208-228.
[6.] Zhang, X., Zhang, Q. J. I. J. o. P., & Sensing, R. (2016). Monitoring interannual variation in global crop yield using long-term AVHRR and MODIS observations. 114, 191-205.
[7.] Huang, J., Wang, H., Dai, Q., Han, D. J. I. J. o. S. T. i. A. E. O., & Sensing, R. (2014). Analysis of NDVI data for crop identification and yield estimation. 7(11), 4374-4384.
[8.] Roy, D. P., Wulder, M. A., Loveland, T. R., Woodcock, C. E., Allen, R. G., Anderson, M. C., . . . Kennedy, R. J. R. s. o. E. (2014). Landsat-8: Science and product vision for terrestrial global change research. 145, 154-172.
[9.] Justice, C. O., Vermote, E., Townshend, J. R., Defries, R., Roy, D. P., Hall, D. K., . . . sensing, r. (1998). The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. 36(4), 1228-1249.
[10.] Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., . . . Martimort, P. J. R. s. o. E. (2012). Sentinel-2: ESA′s optical high-resolution mission for GMES operational services. 120, 25-36.
[11.] Jordan, C. F. J. E. (1969). Derivation of leaf‐area index from quality of light on the forest floor. 50(4), 663-666.
[12.] Rouse, J. J. N. G., type III, final report, greenbelt, MD. (1974). Monitoring the vernal advancement of retrogradation of natural vegetation. 371.
[13.] Huete, A., & Jackson, R. J. R. S. o. E. (1988). Soil and atmosphere influences on the spectra of partial canopies. 25(1), 89-105.
[14.] Liu, H. Q., Huete, A. J. I. t. o. g., & sensing, r. (1995). A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. 33(2), 457-465.
[15.] Huete, A. R., Jackson, R. D., & Post, D. J. R. s. o. e. (1985). Spectral response of a plant canopy with different soil backgrounds. 17(1), 37-53.
[16.] Slater, P. N., & Jackson, R. D. J. A. o. (1982). Atmospheric effects on radiation reflected from soil and vegetation as measured by orbital sensors using various scanning directions. 21(21), 3923-3931.
[17.] Huete, A. R., Justice, C., & van Leeuwen, W. J. G., MD: NASA Goddard Space Flight Center. (1996). MODIS Vegetation index (MOD 13), EOS MODIS algorithm–theoretical basis document.
[18.] Huete, A., Liu, H., Batchily, K., & Van Leeuwen, W. J. R. s. o. e. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. 59(3), 440-451.
[19.] Kaufman, Y. J., Tanre, D. J. I. t. o. G., & Sensing, R. (1992). Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. 30(2), 261-270.
[20.] Bannari, A., Morin, D., Bonn, F., & Huete, A. J. R. s. r. (1995). A review of vegetation indices. 13(1-2), 95-120.
[21.] Poate, C., & Casley, D. J. (1985). Estimating crop production in development projects: methods and their limitations: The World Bank.
[22.] Mahalanobis, P. J. N. (1946). Use of small-size plots in sample surveys for crop yields. 158(4022), 798-799.
[23.] Weier, J., & Herring, D. J. N. E. O. (2000). Measuring vegetation (ndvi & evi). 20.
[24.] Lawrence, R. L., & Ripple, W. J. J. R. S. o. e. (1998). Comparisons among vegetation indices and bandwise regression in a highly disturbed, heterogeneous landscape: Mount St. Helens, Washington. 64(1), 91-102.
[25.] Kross, A., McNairn, H., Lapen, D., Sunohara, M., Champagne, C. J. I. J. o. A. E. O., & Geoinformation. (2015). Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. 34, 235-248.
[26.] Shrestha, R., Di, L., Eugene, G. Y., Kang, L., SHAO, Y.-z., & BAI, Y.-q. J. J. o. I. A. (2017). Regression model to estimate flood impact on corn yield using MODIS NDVI and USDA cropland data layer. 16(2), 398-407.
[27.] Nordberg, M. L., Evertson, J. J. L. D., & Development. (2005). Vegetation index differencing and linear regression for change detection in a Swedish mountain range using Landsat TM® and ETM+® imagery. 16(2), 139-149.
[28.] Mkhabela, M., Bullock, P., Raj, S., Wang, S., Yang, Y. J. A., & Meteorology, F. (2011). Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. 151(3), 385-393.
[29.] Bolton, D. K., Friedl, M. A. J. A., & Meteorology, F. (2013). Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. 173, 74-84.
[30.] Zhou, X., Zhu, X., Dong, Z., & Guo, W. J. T. C. J. (2016). Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. 4(3), 212-219.
[31.] Prasad, A. K., Chai, L., Singh, R. P., Kafatos, M. J. I. J. o. A. e. o., & geoinformation. (2006). Crop yield estimation model for Iowa using remote sensing and surface parameters. 8(1), 26-33.
[32.] Kanagala, S. K., & Sreenivasulu, G. (2018). Landsat 8: UDT-CWT Based Denoising and Yield Estimation. Paper presented at the 2018 International Conference on Communication and Signal Processing (ICCSP).
[33.] Li, Y., Guan, K., Yu, A., Peng, B., Zhao, L., Li, B., & Peng, J. J. F. C. R. (2019). Toward building a transparent statistical model for improving crop yield prediction: Modeling rainfed corn in the US. 234, 55-65.
[34.] Khanal, S., Fulton, J., Klopfenstein, A., Douridas, N., Shearer, S. J. C., & agriculture, e. i. (2018). Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield. 153, 213-225.
[35.] Chen, P., & Jing, Q. J. A. i. s. r. (2017). A comparison of two adaptive multivariate analysis methods (PLSR and ANN) for winter wheat yield forecasting using Landsat-8 OLI images. 59(4), 987-995.
[36.] Liu, Z. Y., Huang, J. F., Wu, X. H., & Dong, Y. P. J. J. o. I. P. B. (2007). Comparison of vegetation indices and red‐edge parameters for estimating grassland cover from canopy reflectance data. 49(3), 299-306.
[37.] Wold, S., Ruhe, A., Wold, H., Dunn, I., WJ %J SIAM Journal on Scientific, & Computing, S. (1984). The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. 5(3), 735-743.
[38.] Geladi, P., & Kowalski, B. R. J. A. c. a. (1986). Partial least-squares regression: a tutorial. 185, 1-17.
[39.] Abdi, H. J. E. f. r. m. f. t. s. s. (2003). Partial least square regression (PLS regression). 6(4), 792-795.
[40.] Hocking, R. R. J. B. (1976). A Biometrics invited paper. The analysis and selection of variables in linear regression. 1-49.
[41.] Wang, M., Wright, J., Brownlee, A., Buswell, R. J. E., & Buildings. (2016). A comparison of approaches to stepwise regression on variables sensitivities in building simulation and analysis. 127, 313-326.
[42.] Mountrakis, G., Im, J., Ogole, C. J. I. J. o. P., & Sensing, R. (2011). Support vector machines in remote sensing: A review. 66(3), 247-259.
[43.] Durbha, S. S., King, R. L., & Younan, N. H. J. R. s. o. e. (2007). Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer. 107(1-2), 348-361.
[44.] Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. Paper presented at the Proceedings of the fifth annual workshop on Computational learning theory.
[45.] Smola, A. J., Schölkopf, B. J. S., & computing. (2004). A tutorial on support vector regression. 14(3), 199-222.
[46.] Aizerman, M. A. J. A., & control, r. (1964). Theoretical foundations of the potential function method in pattern recognition learning. 25, 821-837.
[47.] Chen, P., Wang, J., Huang, W., Tremblay, N., Ou, Y., Zhang, Q. J. I. J. o. S. T. i. A. E. O., & Sensing, R. (2013). Critical nitrogen curve and remote detection of nitrogen nutrition index for corn in the northwestern plain of Shandong Province, China. 6(2), 682-689.
[48.] Gleason, C. J., & Im, J. J. R. S. o. E. (2012). Forest biomass estimation from airborne LiDAR data using machine learning approaches. 125, 80-91.
[49.] Montes, J., Technow, F., Dhillon, B., Mauch, F., & Melchinger, A. J. F. C. R. (2011). High-throughput non-destructive biomass determination during early plant development in maize under field conditions. 121(2), 268-273.
[50.] Tsamardinos, I., Rakhshani, A., & Lagani, V. J. I. J. o. A. I. T. (2015). Performance-estimation properties of cross-validation-based protocols with simultaneous hyper-parameter optimization. 24(05), 1540023.
[51.] Boryan, C., Yang, Z., Mueller, R., & Craig, M. J. G. I. (2011). Monitoring US agriculture: the US department of agriculture, national agricultural statistics service, cropland data layer program. 26(5), 341-358.
[52.] Pahlevan, N., Chittimalli, S. K., Balasubramanian, S. V., & Vellucci, V. J. R. s. o. E. (2019). Sentinel-2/Landsat-8 product consistency and implications for monitoring aquatic systems. 220, 19-29.
[53.] Masek, J. G., Wulder, M. A., Markham, B., McCorkel, J., Crawford, C. J., Storey, J., & Jenstrom, D. T. J. R. S. o. E. (2020). Landsat 9: Empowering open science and applications through continuity. 248, 111968. |