博碩士論文 109421052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:3.145.79.214
姓名 施又升(You-Sheng Shih)  查詢紙本館藏   畢業系所 企業管理學系
論文名稱 以衛星資訊建立預測玉米產量之模型
(Predicting maize yields with satellite information)
相關論文
★ 從企業社會責任報告中找尋影響力議題--以S&P1500為例★ 以衛星資料預測天災及期貨價格變化
★ 以正義理論與計畫行為理論探討音樂類眾籌資助者資助與分享意圖★ 使用MFCC特徵提取技術結合LSTM 模型之股價預測—以特斯拉股價為例
★ 消費者是否願意以溢價購買環保商品 – 以Nike環保球鞋為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 美國的玉米是全球產量最大的作物,故美國的玉米產量足以牽動整個穀物市場的價格。大多數預測美國玉米產量的研究聚焦於植被指數對產量的影響,而本研究根據植被覆蓋率越高且種植面積越大則作物產量越大的假設,將針對植被指數和遙測面積建立迴歸模型預測美國玉米產量。使用的迴歸模型有多元線性迴歸、偏最小二乘迴歸、逐步迴歸以及利用高斯核的支持向量迴歸,最後實驗結果以高斯核(Radial basis function kernel)的支持向量迴歸表現最佳,?2值為 0.94。
摘要(英) Unite States of America harvests the largest crop of maize in the world. The volume it grows, therefore, critically affects many countries and industries. Predicting the yields thus have discussed by prior studies. Recently, with the conveniently available of Satellite images, several research has attempted to make prediction vegetation index on yield. However, this research argues that besides vegetation index, the data of telemetry area are also needed, as higher vegetation coverage and larger planting area lead to greater crop yields. This research therefore, strives to derive 9 years of data for 4 most important states to train various regression models, which include multivariable linear regression, partial least squares regression, stepwise regression, and support vector regression with Gaussian kernel. The result shows that the support vector regression with Gaussian kernel (Radial basis function kernel) performed the best, with R^2 value reaches 0.94.
關鍵字(中) ★ 衛星遙測
★ 遙測面積
★ 植被指數
★ 迴歸分析
關鍵字(英) ★ Satellite telemetry
★ Telemetry area
★ Vegetation Index
★ Regression Analysis
論文目次 摘要 viii
Abstract ix
目錄 x
圖目錄 xii
表目錄 xiv
第一章 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 2
1-3 研究架構 2
第二章 文獻探討 4
2-1 光學衛星 4
2-2 植被指數 6
2-2-1 NDVI 標準化植被指數 6
2-2-2 EVI 增強植被指數 7
2-2-3 ARVI 大氣阻抗植被指數 8
2-3 作物估計 9
2-4 與其他作物遙測研究之差異 10
第三章 研究方法 11
3-1 研究流程 11
3-2 迴歸模型 12
3-2-1 多元線性迴歸(Multivariable linear regression) 12
3-2-2 偏最小二乘迴歸(Partial least squares regression) 13
3-2-3 逐步迴歸(Stepwise regression) 14
3-2-4 支持向量迴歸(Support vector regression) 15
第四章 研究實驗 17
4-1 資料蒐集 17
4-2 資料處理流程 19
4-2-1  植被指數取得流程 19
4-2-2  遙測面積取得流程 22
4-3 實驗結果與分析 23
4-3-1  多元線性迴歸 23
4-3-2  偏最小二乘迴歸 27
4-3-3  逐步迴歸 29
4-3-4 支持向量迴歸 31
第五章 結論與未來研究之建議 38
5-1 研究結論 38
5-2 研究限制與未來建議 39
第六章 參考文獻 40
參考文獻 [1.] 莊純琪、高秋芳&蔡嘉寅. (2008). 全球環境與農業面臨之挑戰. Retrieved from https://www.coa.gov.tw/ws.php?id=13826&print=Y
[2.] Johnson, D. M. J. R. S. o. E. (2014). An assessment of pre-and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. 141, 116-128.
[3.] Becker-Reshef, I., Justice, C., Sullivan, M., Vermote, E., Tucker, C., Anyamba, A., . . . Schmaltz, J. J. R. S. (2010). Monitoring global croplands with coarse resolution earth observations: The Global Agriculture Monitoring (GLAM) project. 2(6), 1589-1609.
[4.] Gao, F., & Anderson, M. (2019). Evaluating yield variability of corn and soybean using Landsat-8, Sentinel-2 and Modis in Google Earth Engine. Paper presented at the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium.
[5.] Sakamoto, T. J. I. J. o. P., & Sensing, R. (2020). Incorporating environmental variables into a MODIS-based crop yield estimation method for United States corn and soybeans through the use of a random forest regression algorithm. 160, 208-228.
[6.] Zhang, X., Zhang, Q. J. I. J. o. P., & Sensing, R. (2016). Monitoring interannual variation in global crop yield using long-term AVHRR and MODIS observations. 114, 191-205.
[7.] Huang, J., Wang, H., Dai, Q., Han, D. J. I. J. o. S. T. i. A. E. O., & Sensing, R. (2014). Analysis of NDVI data for crop identification and yield estimation. 7(11), 4374-4384.
[8.] Roy, D. P., Wulder, M. A., Loveland, T. R., Woodcock, C. E., Allen, R. G., Anderson, M. C., . . . Kennedy, R. J. R. s. o. E. (2014). Landsat-8: Science and product vision for terrestrial global change research. 145, 154-172.
[9.] Justice, C. O., Vermote, E., Townshend, J. R., Defries, R., Roy, D. P., Hall, D. K., . . . sensing, r. (1998). The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. 36(4), 1228-1249.
[10.] Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., . . . Martimort, P. J. R. s. o. E. (2012). Sentinel-2: ESA′s optical high-resolution mission for GMES operational services. 120, 25-36.
[11.] Jordan, C. F. J. E. (1969). Derivation of leaf‐area index from quality of light on the forest floor. 50(4), 663-666.
[12.] Rouse, J. J. N. G., type III, final report, greenbelt, MD. (1974). Monitoring the vernal advancement of retrogradation of natural vegetation. 371.
[13.] Huete, A., & Jackson, R. J. R. S. o. E. (1988). Soil and atmosphere influences on the spectra of partial canopies. 25(1), 89-105.
[14.] Liu, H. Q., Huete, A. J. I. t. o. g., & sensing, r. (1995). A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. 33(2), 457-465.
[15.] Huete, A. R., Jackson, R. D., & Post, D. J. R. s. o. e. (1985). Spectral response of a plant canopy with different soil backgrounds. 17(1), 37-53.
[16.] Slater, P. N., & Jackson, R. D. J. A. o. (1982). Atmospheric effects on radiation reflected from soil and vegetation as measured by orbital sensors using various scanning directions. 21(21), 3923-3931.
[17.] Huete, A. R., Justice, C., & van Leeuwen, W. J. G., MD: NASA Goddard Space Flight Center. (1996). MODIS Vegetation index (MOD 13), EOS MODIS algorithm–theoretical basis document.
[18.] Huete, A., Liu, H., Batchily, K., & Van Leeuwen, W. J. R. s. o. e. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. 59(3), 440-451.
[19.] Kaufman, Y. J., Tanre, D. J. I. t. o. G., & Sensing, R. (1992). Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. 30(2), 261-270.
[20.] Bannari, A., Morin, D., Bonn, F., & Huete, A. J. R. s. r. (1995). A review of vegetation indices. 13(1-2), 95-120.
[21.] Poate, C., & Casley, D. J. (1985). Estimating crop production in development projects: methods and their limitations: The World Bank.
[22.] Mahalanobis, P. J. N. (1946). Use of small-size plots in sample surveys for crop yields. 158(4022), 798-799.
[23.] Weier, J., & Herring, D. J. N. E. O. (2000). Measuring vegetation (ndvi & evi). 20.
[24.] Lawrence, R. L., & Ripple, W. J. J. R. S. o. e. (1998). Comparisons among vegetation indices and bandwise regression in a highly disturbed, heterogeneous landscape: Mount St. Helens, Washington. 64(1), 91-102.
[25.] Kross, A., McNairn, H., Lapen, D., Sunohara, M., Champagne, C. J. I. J. o. A. E. O., & Geoinformation. (2015). Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. 34, 235-248.
[26.] Shrestha, R., Di, L., Eugene, G. Y., Kang, L., SHAO, Y.-z., & BAI, Y.-q. J. J. o. I. A. (2017). Regression model to estimate flood impact on corn yield using MODIS NDVI and USDA cropland data layer. 16(2), 398-407.
[27.] Nordberg, M. L., Evertson, J. J. L. D., & Development. (2005). Vegetation index differencing and linear regression for change detection in a Swedish mountain range using Landsat TM® and ETM+® imagery. 16(2), 139-149.
[28.] Mkhabela, M., Bullock, P., Raj, S., Wang, S., Yang, Y. J. A., & Meteorology, F. (2011). Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. 151(3), 385-393.
[29.] Bolton, D. K., Friedl, M. A. J. A., & Meteorology, F. (2013). Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. 173, 74-84.
[30.] Zhou, X., Zhu, X., Dong, Z., & Guo, W. J. T. C. J. (2016). Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. 4(3), 212-219.
[31.] Prasad, A. K., Chai, L., Singh, R. P., Kafatos, M. J. I. J. o. A. e. o., & geoinformation. (2006). Crop yield estimation model for Iowa using remote sensing and surface parameters. 8(1), 26-33.
[32.] Kanagala, S. K., & Sreenivasulu, G. (2018). Landsat 8: UDT-CWT Based Denoising and Yield Estimation. Paper presented at the 2018 International Conference on Communication and Signal Processing (ICCSP).
[33.] Li, Y., Guan, K., Yu, A., Peng, B., Zhao, L., Li, B., & Peng, J. J. F. C. R. (2019). Toward building a transparent statistical model for improving crop yield prediction: Modeling rainfed corn in the US. 234, 55-65.
[34.] Khanal, S., Fulton, J., Klopfenstein, A., Douridas, N., Shearer, S. J. C., & agriculture, e. i. (2018). Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield. 153, 213-225.
[35.] Chen, P., & Jing, Q. J. A. i. s. r. (2017). A comparison of two adaptive multivariate analysis methods (PLSR and ANN) for winter wheat yield forecasting using Landsat-8 OLI images. 59(4), 987-995.
[36.] Liu, Z. Y., Huang, J. F., Wu, X. H., & Dong, Y. P. J. J. o. I. P. B. (2007). Comparison of vegetation indices and red‐edge parameters for estimating grassland cover from canopy reflectance data. 49(3), 299-306.
[37.] Wold, S., Ruhe, A., Wold, H., Dunn, I., WJ %J SIAM Journal on Scientific, & Computing, S. (1984). The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. 5(3), 735-743.
[38.] Geladi, P., & Kowalski, B. R. J. A. c. a. (1986). Partial least-squares regression: a tutorial. 185, 1-17.
[39.] Abdi, H. J. E. f. r. m. f. t. s. s. (2003). Partial least square regression (PLS regression). 6(4), 792-795.
[40.] Hocking, R. R. J. B. (1976). A Biometrics invited paper. The analysis and selection of variables in linear regression. 1-49.
[41.] Wang, M., Wright, J., Brownlee, A., Buswell, R. J. E., & Buildings. (2016). A comparison of approaches to stepwise regression on variables sensitivities in building simulation and analysis. 127, 313-326.
[42.] Mountrakis, G., Im, J., Ogole, C. J. I. J. o. P., & Sensing, R. (2011). Support vector machines in remote sensing: A review. 66(3), 247-259.
[43.] Durbha, S. S., King, R. L., & Younan, N. H. J. R. s. o. e. (2007). Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer. 107(1-2), 348-361.
[44.] Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. Paper presented at the Proceedings of the fifth annual workshop on Computational learning theory.
[45.] Smola, A. J., Schölkopf, B. J. S., & computing. (2004). A tutorial on support vector regression. 14(3), 199-222.
[46.] Aizerman, M. A. J. A., & control, r. (1964). Theoretical foundations of the potential function method in pattern recognition learning. 25, 821-837.
[47.] Chen, P., Wang, J., Huang, W., Tremblay, N., Ou, Y., Zhang, Q. J. I. J. o. S. T. i. A. E. O., & Sensing, R. (2013). Critical nitrogen curve and remote detection of nitrogen nutrition index for corn in the northwestern plain of Shandong Province, China. 6(2), 682-689.
[48.] Gleason, C. J., & Im, J. J. R. S. o. E. (2012). Forest biomass estimation from airborne LiDAR data using machine learning approaches. 125, 80-91.
[49.] Montes, J., Technow, F., Dhillon, B., Mauch, F., & Melchinger, A. J. F. C. R. (2011). High-throughput non-destructive biomass determination during early plant development in maize under field conditions. 121(2), 268-273.
[50.] Tsamardinos, I., Rakhshani, A., & Lagani, V. J. I. J. o. A. I. T. (2015). Performance-estimation properties of cross-validation-based protocols with simultaneous hyper-parameter optimization. 24(05), 1540023.
[51.] Boryan, C., Yang, Z., Mueller, R., & Craig, M. J. G. I. (2011). Monitoring US agriculture: the US department of agriculture, national agricultural statistics service, cropland data layer program. 26(5), 341-358.
[52.] Pahlevan, N., Chittimalli, S. K., Balasubramanian, S. V., & Vellucci, V. J. R. s. o. E. (2019). Sentinel-2/Landsat-8 product consistency and implications for monitoring aquatic systems. 220, 19-29.
[53.] Masek, J. G., Wulder, M. A., Markham, B., McCorkel, J., Crawford, C. J., Storey, J., & Jenstrom, D. T. J. R. S. o. E. (2020). Landsat 9: Empowering open science and applications through continuity. 248, 111968.
指導教授 許秉瑜 陳以錚(Ping-Yu Hsu Yi-Cheng Chen) 審核日期 2022-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明